Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

New proposal to the electrical representation of a solid oxide fuel cell

New proposal to the electrical representation of a solid oxide fuel cell <jats:sec> <jats:title content-type="abstract-subheading">Purpose</jats:title> <jats:p>The aim of this paper is to find the electrical representation of a solid oxide fuel cell (SOFC) that enables the application of typical exploitation characteristics of fuel cells for estimation of fuel cell parameters (for example, exchange current) and easy analysis of phenomena occurred during the fuel cell operation.</jats:p> </jats:sec> <jats:sec> <jats:title content-type="abstract-subheading">Design/methodology/approach</jats:title> <jats:p>Three-layer structure of an SOFC, where a thin semi-conducting layer of electrolyte separates the anode from the cathode, shows a strong similarity to typical semiconductor devices built on the basis of P-N junctions, like diodes or transistors. Current–voltage (I-V) characteristics of a fuel cell can be described by the same mathematical functions as I-V plots of semiconductor devices. On the basis of this similarity and analysis of impedance spectra of a real fuel cell, two electrical representations of the SOFC have been created.</jats:p> </jats:sec> <jats:sec> <jats:title content-type="abstract-subheading">Findings</jats:title> <jats:p>The simplified electrical representation of SOFC consists of a voltage source connected in series with a diode, which symbolizes a voltage drop on a cell cathode, and two resistors. This model is based on the similarity of Butler-Volmer to Shockley equation. The advanced representation comprises a voltage source connected in series with a bipolar transistor in close to saturation mode and two resistors. The base-emitter junction of the transistor represents voltage drop on the cell cathode, and the base-collector junction represents voltage drop on the cell anode. This model is based on the similarity of Butler-Volmer equation to Ebers-Moll equation.</jats:p> </jats:sec> <jats:sec> <jats:title content-type="abstract-subheading">Originality/value</jats:title> <jats:p>The proposed approach based on the Shockley and Ebers-Moll formulas enables the more accurate estimation of the ion exchange current and other fuel cell parameters than the approach based on the Butler-Volmer and Tafel formulas. The usability of semiconductor models for analysis of SOFC operation was proved. The models were successively applied in a new design of a planar ceramic fuel cell, which features by reduced thermal capacity, short start-up time and limited number of metal components and which has become the basis for the SOFC stack design.</jats:p> </jats:sec> http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microelectronics International CrossRef

New proposal to the electrical representation of a solid oxide fuel cell

Microelectronics International , Volume 34 (3): 140-148 – Aug 7, 2017

New proposal to the electrical representation of a solid oxide fuel cell


Abstract

<jats:sec>
<jats:title content-type="abstract-subheading">Purpose</jats:title>
<jats:p>The aim of this paper is to find the electrical representation of a solid oxide fuel cell (SOFC) that enables the application of typical exploitation characteristics of fuel cells for estimation of fuel cell parameters (for example, exchange current) and easy analysis of phenomena occurred during the fuel cell operation.</jats:p>
</jats:sec>
<jats:sec>
<jats:title content-type="abstract-subheading">Design/methodology/approach</jats:title>
<jats:p>Three-layer structure of an SOFC, where a thin semi-conducting layer of electrolyte separates the anode from the cathode, shows a strong similarity to typical semiconductor devices built on the basis of P-N junctions, like diodes or transistors. Current–voltage (I-V) characteristics of a fuel cell can be described by the same mathematical functions as I-V plots of semiconductor devices. On the basis of this similarity and analysis of impedance spectra of a real fuel cell, two electrical representations of the SOFC have been created.</jats:p>
</jats:sec>
<jats:sec>
<jats:title content-type="abstract-subheading">Findings</jats:title>
<jats:p>The simplified electrical representation of SOFC consists of a voltage source connected in series with a diode, which symbolizes a voltage drop on a cell cathode, and two resistors. This model is based on the similarity of Butler-Volmer to Shockley equation. The advanced representation comprises a voltage source connected in series with a bipolar transistor in close to saturation mode and two resistors. The base-emitter junction of the transistor represents voltage drop on the cell cathode, and the base-collector junction represents voltage drop on the cell anode. This model is based on the similarity of Butler-Volmer equation to Ebers-Moll equation.</jats:p>
</jats:sec>
<jats:sec>
<jats:title content-type="abstract-subheading">Originality/value</jats:title>
<jats:p>The proposed approach based on the Shockley and Ebers-Moll formulas enables the more accurate estimation of the ion exchange current and other fuel cell parameters than the approach based on the Butler-Volmer and Tafel formulas. The usability of semiconductor models for analysis of SOFC operation was proved. The models were successively applied in a new design of a planar ceramic fuel cell, which features by reduced thermal capacity, short start-up time and limited number of metal components and which has become the basis for the SOFC stack design.</jats:p>
</jats:sec>

Loading next page...
 
/lp/crossref/new-proposal-to-the-electrical-representation-of-a-solid-oxide-fuel-L4qG8FvPQa
Publisher
CrossRef
ISSN
1356-5362
DOI
10.1108/mi-12-2016-0092
Publisher site
See Article on Publisher Site

Abstract

<jats:sec> <jats:title content-type="abstract-subheading">Purpose</jats:title> <jats:p>The aim of this paper is to find the electrical representation of a solid oxide fuel cell (SOFC) that enables the application of typical exploitation characteristics of fuel cells for estimation of fuel cell parameters (for example, exchange current) and easy analysis of phenomena occurred during the fuel cell operation.</jats:p> </jats:sec> <jats:sec> <jats:title content-type="abstract-subheading">Design/methodology/approach</jats:title> <jats:p>Three-layer structure of an SOFC, where a thin semi-conducting layer of electrolyte separates the anode from the cathode, shows a strong similarity to typical semiconductor devices built on the basis of P-N junctions, like diodes or transistors. Current–voltage (I-V) characteristics of a fuel cell can be described by the same mathematical functions as I-V plots of semiconductor devices. On the basis of this similarity and analysis of impedance spectra of a real fuel cell, two electrical representations of the SOFC have been created.</jats:p> </jats:sec> <jats:sec> <jats:title content-type="abstract-subheading">Findings</jats:title> <jats:p>The simplified electrical representation of SOFC consists of a voltage source connected in series with a diode, which symbolizes a voltage drop on a cell cathode, and two resistors. This model is based on the similarity of Butler-Volmer to Shockley equation. The advanced representation comprises a voltage source connected in series with a bipolar transistor in close to saturation mode and two resistors. The base-emitter junction of the transistor represents voltage drop on the cell cathode, and the base-collector junction represents voltage drop on the cell anode. This model is based on the similarity of Butler-Volmer equation to Ebers-Moll equation.</jats:p> </jats:sec> <jats:sec> <jats:title content-type="abstract-subheading">Originality/value</jats:title> <jats:p>The proposed approach based on the Shockley and Ebers-Moll formulas enables the more accurate estimation of the ion exchange current and other fuel cell parameters than the approach based on the Butler-Volmer and Tafel formulas. The usability of semiconductor models for analysis of SOFC operation was proved. The models were successively applied in a new design of a planar ceramic fuel cell, which features by reduced thermal capacity, short start-up time and limited number of metal components and which has become the basis for the SOFC stack design.</jats:p> </jats:sec>

Journal

Microelectronics InternationalCrossRef

Published: Aug 7, 2017

References