Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Coconut fibre-reinforced cement-stabilized rammed earth blocks

Coconut fibre-reinforced cement-stabilized rammed earth blocks <jats:sec> <jats:title content-type="abstract-subheading">Purpose</jats:title> <jats:p>This study aims to investigate the optimum proportion of coconut fibre and cement suitable for rammed earth wall construction. Coconut fibres and cement can be easily incorporated into the soil mixture which adds strength and durability to the wall. This paper highlights the salient observations from a systematic investigation on the effect of coconut fibre on the performance of stabilized rammed earth blocks.</jats:p> </jats:sec> <jats:sec> <jats:title content-type="abstract-subheading">Design/methodology/approach</jats:title> <jats:p>Stabilization of soil was done by adding Ordinary Portland Cement (2.5, 5.0, 7.5 and 10.0 per cent by weight of soil), whereas coconut fibre in length about 15 mm was added (0.2, 0.4, 0.6, 0.8 and 1.0 per cent by weight of soil) as reinforcement. Thirty types of mixes were created by adding different proportions of cement and fibre to locally available soil and compacting the mix at constant compaction energy in three layers with Proctor rammer.</jats:p> </jats:sec> <jats:sec> <jats:title content-type="abstract-subheading">Findings</jats:title> <jats:p>Samples were tested for compressive strength and tensile strength, and failure patterns were analysed. The use of cement and fibre increases ultimate strengths significantly up to an optimum limit of 0.8 per cent fibre content, provides a secondary benefit of keeping material bound together after failure and increases residual strength. Benefits of fibre reinforcement includes both improved ductility in comparison with raw blocks and inhibition of crack propagation after its initial formation.</jats:p> </jats:sec> <jats:sec> <jats:title content-type="abstract-subheading">Originality/value</jats:title> <jats:p>After analysing the results, it is recommended to use 0.8 per cent fibre and 5-10 per cent cement by weight of soil to achieve considerable strength. This research may add a value in the areas of green and sustainable housing, waste utilization, etc.</jats:p> </jats:sec> http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png World Journal of Engineering CrossRef

Coconut fibre-reinforced cement-stabilized rammed earth blocks

World Journal of Engineering , Volume 14 (3): 208-216 – Jun 12, 2017

Coconut fibre-reinforced cement-stabilized rammed earth blocks


Abstract

<jats:sec>
<jats:title content-type="abstract-subheading">Purpose</jats:title>
<jats:p>This study aims to investigate the optimum proportion of coconut fibre and cement suitable for rammed earth wall construction. Coconut fibres and cement can be easily incorporated into the soil mixture which adds strength and durability to the wall. This paper highlights the salient observations from a systematic investigation on the effect of coconut fibre on the performance of stabilized rammed earth blocks.</jats:p>
</jats:sec>
<jats:sec>
<jats:title content-type="abstract-subheading">Design/methodology/approach</jats:title>
<jats:p>Stabilization of soil was done by adding Ordinary Portland Cement (2.5, 5.0, 7.5 and 10.0 per cent by weight of soil), whereas coconut fibre in length about 15 mm was added (0.2, 0.4, 0.6, 0.8 and 1.0 per cent by weight of soil) as reinforcement. Thirty types of mixes were created by adding different proportions of cement and fibre to locally available soil and compacting the mix at constant compaction energy in three layers with Proctor rammer.</jats:p>
</jats:sec>
<jats:sec>
<jats:title content-type="abstract-subheading">Findings</jats:title>
<jats:p>Samples were tested for compressive strength and tensile strength, and failure patterns were analysed. The use of cement and fibre increases ultimate strengths significantly up to an optimum limit of 0.8 per cent fibre content, provides a secondary benefit of keeping material bound together after failure and increases residual strength. Benefits of fibre reinforcement includes both improved ductility in comparison with raw blocks and inhibition of crack propagation after its initial formation.</jats:p>
</jats:sec>
<jats:sec>
<jats:title content-type="abstract-subheading">Originality/value</jats:title>
<jats:p>After analysing the results, it is recommended to use 0.8 per cent fibre and 5-10 per cent cement by weight of soil to achieve considerable strength. This research may add a value in the areas of green and sustainable housing, waste utilization, etc.</jats:p>
</jats:sec>

Loading next page...
 
/lp/crossref/coconut-fibre-reinforced-cement-stabilized-rammed-earth-blocks-kU17YsQ9wo

References (22)

Publisher
CrossRef
ISSN
1708-5284
DOI
10.1108/wje-10-2016-0101
Publisher site
See Article on Publisher Site

Abstract

<jats:sec> <jats:title content-type="abstract-subheading">Purpose</jats:title> <jats:p>This study aims to investigate the optimum proportion of coconut fibre and cement suitable for rammed earth wall construction. Coconut fibres and cement can be easily incorporated into the soil mixture which adds strength and durability to the wall. This paper highlights the salient observations from a systematic investigation on the effect of coconut fibre on the performance of stabilized rammed earth blocks.</jats:p> </jats:sec> <jats:sec> <jats:title content-type="abstract-subheading">Design/methodology/approach</jats:title> <jats:p>Stabilization of soil was done by adding Ordinary Portland Cement (2.5, 5.0, 7.5 and 10.0 per cent by weight of soil), whereas coconut fibre in length about 15 mm was added (0.2, 0.4, 0.6, 0.8 and 1.0 per cent by weight of soil) as reinforcement. Thirty types of mixes were created by adding different proportions of cement and fibre to locally available soil and compacting the mix at constant compaction energy in three layers with Proctor rammer.</jats:p> </jats:sec> <jats:sec> <jats:title content-type="abstract-subheading">Findings</jats:title> <jats:p>Samples were tested for compressive strength and tensile strength, and failure patterns were analysed. The use of cement and fibre increases ultimate strengths significantly up to an optimum limit of 0.8 per cent fibre content, provides a secondary benefit of keeping material bound together after failure and increases residual strength. Benefits of fibre reinforcement includes both improved ductility in comparison with raw blocks and inhibition of crack propagation after its initial formation.</jats:p> </jats:sec> <jats:sec> <jats:title content-type="abstract-subheading">Originality/value</jats:title> <jats:p>After analysing the results, it is recommended to use 0.8 per cent fibre and 5-10 per cent cement by weight of soil to achieve considerable strength. This research may add a value in the areas of green and sustainable housing, waste utilization, etc.</jats:p> </jats:sec>

Journal

World Journal of EngineeringCrossRef

Published: Jun 12, 2017

There are no references for this article.