A systematic identification approach for biaxial piezoelectric stage with coupled Duhem-type hysteresis
Abstract
<jats:sec>
<jats:title content-type="abstract-subheading">Purpose</jats:title>
<jats:p>The problem of parameter identification for biaxial piezoelectric stages is still a challenging task because of the existing hysteresis, dynamics and cross-axis coupling. This study aims to find an accurate and systematic approach to tackle this problem.</jats:p>
</jats:sec>
<jats:sec>
<jats:title content-type="abstract-subheading">Design/methodology/approach</jats:title>
<jats:p>First, a dual-input and dual-output (DIDO) model with Duhem-type hysteresis is proposed to depict the dynamic behavior of the biaxial piezoelectric stage. Then, a systematic identification approach based on a modified differential evolution (DE) algorithm is proposed to identify the unknown parameters of the Duhem-type DIDO model for a biaxial piezostage. The randomness and parallelism of the modified DE algorithm guarantee its high efficiency.</jats:p>
</jats:sec>
<jats:sec>
<jats:title content-type="abstract-subheading">Findings</jats:title>
<jats:p>The experimental results show that the characteristics of the biaxial piezoelectric stage can be identified with adequate accuracy based on the input–output data, and the peak-valley errors account for 2.8% of the full range in the X direction and 1.5% in the Y direction. The attained results validated the correctness and effectiveness of the presented identification method.</jats:p>
</jats:sec>
<jats:sec>
<jats:title content-type="abstract-subheading">Originality/value</jats:title>
<jats:p>The classical DE algorithm has many adjustment parameters, which increases the inconvenience and difficulty of using in practice. The parameter identification of Duhem-type DIDO piezoelectric model is rarely studied in detail and its successful application based on DE algorithm on a biaxial piezostage is hitherto unexplored. To close this gap, this work proposed a modified DE-based systematic identification approach. It not only can identify this complicated model with more parameters, but also has little tuning parameters and thus is easy to use.</jats:p>
</jats:sec>