Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Abstract In order to continuously monitor the phytoplankton growth in Antarctic coastal waters, an online mooring system was deployed in Great Wall Bay (unofficial name), King George Island, and both chlorophyll a (chl a) concentrations and environmental variables were monitored in a period between December 2010 and March 2011. Water temperatures showed a significant increasing trend (0.27–2.52°C), whereas the salinities displayed a decreasing trend (34.19–33.86). In general, phytoplankton biomass accumulated from mid-December and two significant blooms developed in January (3.18 μg l-1 and 4.75 μg l-1) and were then maintained at a relatively high level, with a transient bloom in late February (4.93 μg l-1). Sea-ice meltwater and terrestrial freshwater input caused by the increase of temperature played an important role in inducing phytoplankton blooms in early summer. The variation and stratification of temperature and salinity signals in different water layers, without total mixing, suggested lateral intrusion of oceanic waters with alternating levels of temperature and salinity and, presumably, phytoplankton as well. Meanwhile, chl a concentrations initially decreased with an increase in irradiance, indicating the shade-adapted characteristic of phytoplankton in early summer, and then gradually adapted to the increasing irradiance. Our results demonstrated the effectiveness and reliability of the online coastal mooring system for the monitoring of Antarctic coastal phytoplankton bloom and environmental conditions.
Antarctic Science – Cambridge University Press
Published: Sep 9, 2013
Keywords: King George Island; photosynthetically active radiation (PAR); South Shetland Islands; temperature
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.