Vertical distribution of calanoid copepods in a mature cyclonic eddy in the Gulf of California

Vertical distribution of calanoid copepods in a mature cyclonic eddy in the Gulf of California The distribution of calanoid copepod habitats in a cyclonic eddy in the Gulf of California was examined. Direct velocity observations revealed that the eddy extended to approximately 550 m depth and 150 km diameter. The established thermocline suggested that active vertical pumping was not occurring because the eddy was in mature phase. A copepod habitat located in the surface mixed layer, showed high abundances, dominated by Subeucalanus subtenuis (Giesbrecht, 1888), whose abundances decrease towards the centre of the eddy. A second habitat, situated in thermocline, had the highest abundances dominated by Nannocalanus minor (Claus, 1863) and Temora discaudata Giesbrecht, 1889. Another habitat, beneath the thermocline, was dominated by most of species recorded in thermocline, but with the lowest abundance. Results suggest that in the mature phase of a cyclonic eddy, the water column stratification induces layering of the calanoid copepod habitats, with the most propitious conditions for their feeding in thermocline. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Crustaceana Brill

Vertical distribution of calanoid copepods in a mature cyclonic eddy in the Gulf of California

Loading next page...
 
/lp/brill/vertical-distribution-of-calanoid-copepods-in-a-mature-cyclonic-eddy-NWdBZwmUCv
Publisher
Brill
Copyright
Copyright © Koninklijke Brill NV, Leiden, The Netherlands
ISSN
0011-216x
eISSN
1568-5403
D.O.I.
10.1163/15685403-00003751
Publisher site
See Article on Publisher Site

Abstract

The distribution of calanoid copepod habitats in a cyclonic eddy in the Gulf of California was examined. Direct velocity observations revealed that the eddy extended to approximately 550 m depth and 150 km diameter. The established thermocline suggested that active vertical pumping was not occurring because the eddy was in mature phase. A copepod habitat located in the surface mixed layer, showed high abundances, dominated by Subeucalanus subtenuis (Giesbrecht, 1888), whose abundances decrease towards the centre of the eddy. A second habitat, situated in thermocline, had the highest abundances dominated by Nannocalanus minor (Claus, 1863) and Temora discaudata Giesbrecht, 1889. Another habitat, beneath the thermocline, was dominated by most of species recorded in thermocline, but with the lowest abundance. Results suggest that in the mature phase of a cyclonic eddy, the water column stratification induces layering of the calanoid copepod habitats, with the most propitious conditions for their feeding in thermocline.

Journal

CrustaceanaBrill

Published: Aug 1, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off