Traffic noise affects colouration but not calls in the European treefrog (Hyla arborea)

Traffic noise affects colouration but not calls in the European treefrog (Hyla arborea) In terrestrial habitats, traffic noise is responsible for chronic noise exposure and impacts both signal detection and acoustic signal structure. Several species are known to adapt their call structures to cope with noise. However, compromised hearing affects more than acoustic communication, and noise should be consider as a stress factor that can also alter visual communication in the case of carotenoid-based signals. Here, we experimentally investigated the impact of traffic noise on the expression of secondary sexual signals in the European treefrog, Hyla arborea. Treefrogs use multimodal communication in the sexual selection process (mating calls and vocal sac colouration). We found that treefrogs seem unable to adjust their call structure. Nonetheless, males showed a significant decrease in colouration intensity. Our findings highlight for the first time the negative effect of traffic noise on colour signals. This suggests that anthropogenic noise could affect a wider range of species than previously thought. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Behaviour Brill

Traffic noise affects colouration but not calls in the European treefrog (Hyla arborea)

Loading next page...
 
/lp/brill/traffic-noise-affects-colouration-but-not-calls-in-the-european-wdmZnAyrwv
Publisher
Brill
Copyright
Copyright © Koninklijke Brill NV, Leiden, The Netherlands
Subject
Regular articles
ISSN
0005-7959
eISSN
1568-539X
DOI
10.1163/1568539X-00003255
Publisher site
See Article on Publisher Site

Abstract

In terrestrial habitats, traffic noise is responsible for chronic noise exposure and impacts both signal detection and acoustic signal structure. Several species are known to adapt their call structures to cope with noise. However, compromised hearing affects more than acoustic communication, and noise should be consider as a stress factor that can also alter visual communication in the case of carotenoid-based signals. Here, we experimentally investigated the impact of traffic noise on the expression of secondary sexual signals in the European treefrog, Hyla arborea. Treefrogs use multimodal communication in the sexual selection process (mating calls and vocal sac colouration). We found that treefrogs seem unable to adjust their call structure. Nonetheless, males showed a significant decrease in colouration intensity. Our findings highlight for the first time the negative effect of traffic noise on colour signals. This suggests that anthropogenic noise could affect a wider range of species than previously thought.

Journal

BehaviourBrill

Published: Dec 15, 2014

Keywords: traffic noise; acoustic cues; carotenoids; Hyla arborea

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off