Fusion and fission of atomic clusters: recent advances

Fusion and fission of atomic clusters: recent advances We review recent advances made by our group in finding optimized geometries of atomic clusters as well as in description of fission of charged small metal clusters. We base our approach to these problems on analysis of multidimensional potential energy surface. For the fusion process we have developed an effective scheme of adding new atoms to stable cluster isomers which provides good starting points for a global optimization procedure and thus allows one to obtain optimal geometries of larger clusters in an efficient way. We apply this algorithm to finding geometries of metal and noble gas clusters. For the fission process the analysis of the potential energy landscape calculated on the ab initio level of theory allowed us to obtain very detailed information on energetics and pathways of the different fission channels for the Na2+ 10 clusters. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Computing Letters Brill

Fusion and fission of atomic clusters: recent advances

Loading next page...
 
/lp/brill/fusion-and-fission-of-atomic-clusters-recent-advances-5eSlhmOrnw
Publisher
Brill
Copyright
Copyright © Koninklijke Brill NV, Leiden, The Netherlands
eISSN
1574-0404
DOI
10.1163/157404005776611501
Publisher site
See Article on Publisher Site

Abstract

We review recent advances made by our group in finding optimized geometries of atomic clusters as well as in description of fission of charged small metal clusters. We base our approach to these problems on analysis of multidimensional potential energy surface. For the fusion process we have developed an effective scheme of adding new atoms to stable cluster isomers which provides good starting points for a global optimization procedure and thus allows one to obtain optimal geometries of larger clusters in an efficient way. We apply this algorithm to finding geometries of metal and noble gas clusters. For the fission process the analysis of the potential energy landscape calculated on the ab initio level of theory allowed us to obtain very detailed information on energetics and pathways of the different fission channels for the Na2+ 10 clusters.

Journal

Computing LettersBrill

Published: Aug 2, 2005

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off