Effects of long-term experimental warming on plant community properties and soil microbial community composition in an alpine meadow

Effects of long-term experimental warming on plant community properties and soil microbial... Climate change is likely to alter the relative abundances of plant functional groups and the interactions between plants and soil microbes that maintain alpine meadow ecosystems. However, little is known about how warming-induced alterations to aboveground biomass (AGB) affect soil nutrients and microbial communities. We investigated plant community characteristics in 2002–2009 and analyzed soil properties and the soil microbial community in 2007–2009 to study the effects of warming in Qinghai Province, China. Sampling involved the use of warmed open top chambers, the monitoring of plant community characteristics, the quantification of total and available amounts of soil nutrients, and the evaluation of microbial community composition using phospholipid fatty acid (PLFA) analysis. Experimental warming initially significantly increased the number of plant functional groups and plant community AGB; however, plant community diversity and species richness decreased. Nevertheless, all these variables stabilized over time. Fungal and bacterial abundance, total nitrogen, available nitrogen and soil organic matter increased with warming, while microbial PLFAs decreased. These findings demonstrated that climate change drivers and their interactions may cause changes in soil nutrients and the abundance and content of soil microbial PLFAs. Elevated temperature has strong effects on aboveground grass biomass. Surface conditions and disturbance affect the soil microbial communities of deep soil layers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Israel Journal of Ecology and Evolution Brill

Effects of long-term experimental warming on plant community properties and soil microbial community composition in an alpine meadow

Loading next page...
 
/lp/brill/effects-of-long-term-experimental-warming-on-plant-community-iB1V9hSxam
Publisher
Brill
Copyright
Copyright © Koninklijke Brill NV, Leiden, The Netherlands
ISSN
1565-9801
eISSN
2224-4662
DOI
10.1080/15659801.2017.1281201
Publisher site
See Article on Publisher Site

Abstract

Climate change is likely to alter the relative abundances of plant functional groups and the interactions between plants and soil microbes that maintain alpine meadow ecosystems. However, little is known about how warming-induced alterations to aboveground biomass (AGB) affect soil nutrients and microbial communities. We investigated plant community characteristics in 2002–2009 and analyzed soil properties and the soil microbial community in 2007–2009 to study the effects of warming in Qinghai Province, China. Sampling involved the use of warmed open top chambers, the monitoring of plant community characteristics, the quantification of total and available amounts of soil nutrients, and the evaluation of microbial community composition using phospholipid fatty acid (PLFA) analysis. Experimental warming initially significantly increased the number of plant functional groups and plant community AGB; however, plant community diversity and species richness decreased. Nevertheless, all these variables stabilized over time. Fungal and bacterial abundance, total nitrogen, available nitrogen and soil organic matter increased with warming, while microbial PLFAs decreased. These findings demonstrated that climate change drivers and their interactions may cause changes in soil nutrients and the abundance and content of soil microbial PLFAs. Elevated temperature has strong effects on aboveground grass biomass. Surface conditions and disturbance affect the soil microbial communities of deep soil layers.

Journal

Israel Journal of Ecology and EvolutionBrill

Published: Dec 22, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off