Characterisation of the effects on proteases of Heterodera glycines and Meloidogyne incognita second-stage juveniles by inhibitors obtained from cysts of H. glycines

Characterisation of the effects on proteases of Heterodera glycines and Meloidogyne incognita... The protease inhibitor component of Heterodera glycines cyst contents was explored using a battery of peptide substrates and H. glycines and Meloidogyne incognita second-stage juveniles as enzyme sources. Protease inhibitors were prepared by heat-denaturing H. glycines cyst-egg extract (hHglCE), which was used in all inhibition exploration. Eight substrates targeting four endoprotease groups (aspartic, cysteine, metallo- and serine proteases) revealed that protease inhibition by hHglCE varied significantly between H. glycines and M. incognita with seven of the eight substrates. Only cysteine protease activity was inhibited equally between H. glycines and M. incognita. Aspartic protease activity was inhibited more strongly in H. glycines and serine protease activity was inhibited more strongly in M. incognita. Digestion of five matrix metalloprotease (MMP) substrates was inhibited more strongly in H. glycines (two substrates) and M. incognita (three substrates). These variations were particularly intriguing given the potential association of MMP proteases with developing embryos. Inhibition of digestion of nematode FMRFamide-like peptides (FLPs) showed less variation between nematode species than the targeted substrates, but inhibition did vary significantly across substrates within each species. Digestion of FLP-6 was the least affected by hHglCE but was inhibited significantly more in M. incognita than in H. glycines. Residue differences between two FLP-14 sequences significantly affected inhibition of FLP-14 digestion in both H. glycines and M. incognita. RP-HPLC fractionation of hHglCE clearly demonstrated the presence of high (Fr No.5) and low (Fr No.14) polarity inhibitor components. Potency of inhibition of M. incognita serine protease activity, based upon IC50 values (1.68 and 2.78 hHglCEeq reaction−1 for Fr No.5 and Fr No.14, respectively), was reduced significantly from unfractionated hHglCE (IC50 = 0.61), suggesting inhibitor dilution, loss of component synergy, or both, due to fractionation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nematology Brill

Characterisation of the effects on proteases of Heterodera glycines and Meloidogyne incognita second-stage juveniles by inhibitors obtained from cysts of H. glycines

Nematology , Volume 20 (5): 10 – Jun 1, 2018

Loading next page...
 
/lp/brill/characterisation-of-the-effects-on-proteases-of-heterodera-glycines-pBS4ACZnGM
Publisher
Brill
Copyright
Copyright © Koninklijke Brill NV, Leiden, The Netherlands
ISSN
1388-5545
eISSN
1568-5411
D.O.I.
10.1163/15685411-00003151
Publisher site
See Article on Publisher Site

Abstract

The protease inhibitor component of Heterodera glycines cyst contents was explored using a battery of peptide substrates and H. glycines and Meloidogyne incognita second-stage juveniles as enzyme sources. Protease inhibitors were prepared by heat-denaturing H. glycines cyst-egg extract (hHglCE), which was used in all inhibition exploration. Eight substrates targeting four endoprotease groups (aspartic, cysteine, metallo- and serine proteases) revealed that protease inhibition by hHglCE varied significantly between H. glycines and M. incognita with seven of the eight substrates. Only cysteine protease activity was inhibited equally between H. glycines and M. incognita. Aspartic protease activity was inhibited more strongly in H. glycines and serine protease activity was inhibited more strongly in M. incognita. Digestion of five matrix metalloprotease (MMP) substrates was inhibited more strongly in H. glycines (two substrates) and M. incognita (three substrates). These variations were particularly intriguing given the potential association of MMP proteases with developing embryos. Inhibition of digestion of nematode FMRFamide-like peptides (FLPs) showed less variation between nematode species than the targeted substrates, but inhibition did vary significantly across substrates within each species. Digestion of FLP-6 was the least affected by hHglCE but was inhibited significantly more in M. incognita than in H. glycines. Residue differences between two FLP-14 sequences significantly affected inhibition of FLP-14 digestion in both H. glycines and M. incognita. RP-HPLC fractionation of hHglCE clearly demonstrated the presence of high (Fr No.5) and low (Fr No.14) polarity inhibitor components. Potency of inhibition of M. incognita serine protease activity, based upon IC50 values (1.68 and 2.78 hHglCEeq reaction−1 for Fr No.5 and Fr No.14, respectively), was reduced significantly from unfractionated hHglCE (IC50 = 0.61), suggesting inhibitor dilution, loss of component synergy, or both, due to fractionation.

Journal

NematologyBrill

Published: Jun 1, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off