Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
ABSTRACTCircadian rhythms in cortisol and testosterone in both blood and cerebrospinal fluid (CSF) were studied in four groups of male and female talapoin monkeys. Samples were taken 4 h apart under two conditions: whilst the sexes were kept separate (isosexual) and again after 24 h of interaction (heterosexual). There were similar rhythms in cortisol in males and females during the isosexual condition, though in blood (but not in CSF) mean levels were higher in females. Heterosexual interaction increased cortisol levels in both sexes (though more so in males), and also altered the shape of the rhythm, acrophase being delayed by 4 h in males and by 2 h in females. The amplitude of the rhythm was not altered. Cortisol levels were positively correlated in both males and females with the amount of aggression received from other males, but not from females nor with the animals' social rank.Circadian rhythms in serum testosterone in males were also altered by heterosexual interaction. Access to females delayed acrophase by 2 h, but had no effect on mean levels (unlike the effect on cortisol). As for cortisol, the amplitude of the testosterone rhythm remained unchanged. Serum testosterone was negatively correlated with aggression from males, but not from females nor with sexual interaction. This was associated with a pronounced decrease in the levels of testosterone during the night, not observed in males receiving no aggression from others. There was a non-significant trend towards a positive correlation between social rank and serum testosterone.These results show that social behaviour in groupliving primates has major effects on the parameters of the circadian pattern of secretion of both cortisol and testosterone. Aggression received from males seems to be a potent factor associated with the daily rhythms in both hormones, though there may be rank-related effects in the case of testosterone.J. Endocr. (1987) 115, 107–120
Journal of Endocrinology – Bioscientifica
Published: Oct 1, 1987
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.