Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Towards the Assessment of Semantic Similarity Analysis of Protein Data: Main Approaches and Issues Pietro Hiram Guzzi University of Catanzaro Marco Mina University of Padova ABSTRACT Bioinformatics approaches to the study of proteins yield to the introduction of different methodologies and related tools for the analysis of different types of data related to proteins, ranging from primary, secondary and tertiary structures to interaction data [1], not to mention functional knowledge. One of the most advanced tools for encoding and representing functional knowledge in a formal way is the Gene Ontology (GO) [2,3]. It is composed of three ontologies, named Biological Process (BP), Molecular Function (MF) and Cellular Component (CC). Each ontology consists of a set of terms (GO terms) representing different functions, biological processes and cellular components within the cell. GO terms are connected each other to form a hierarchical graph. Terms representing similar functions are close to each other within this graph. Biological molecules are associated with GO terms that represent their functions, biological roles and localization. This process, usually referred to as annotation process, can be performed under the supervision of an expert or in a fully automated way. Obviously, computationally inferred annotations, commonly known as
ACM SIGBioinformatics Record – Association for Computing Machinery
Published: Sep 1, 2012
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.