Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Scalable application layer multicast

Scalable application layer multicast We describe a new scalable application-layer multicast protocol, specifically designed for low-bandwidth, data streaming applications with large receiver sets. Our scheme is based upon a hierarchical clustering of the application-layer multicast peers and can support a number of different data delivery trees with desirable properties.We present extensive simulations of both our protocol and the Narada application-layer multicast protocol over Internet-like topologies. Our results show that for groups of size 32 or more, our protocol has lower link stress (by about 25%), improved or similar end-to-end latencies and similar failure recovery properties. More importantly, it is able to achieve these results by using orders of magnitude lower control traffic.Finally, we present results from our wide-area testbed in which we experimented with 32-100 member groups distributed over 8 different sites. In our experiments, average group members established and maintained low-latency paths and incurred a maximum packet loss rate of less than 1% as members randomly joined and left the multicast group. The average control overhead during our experiments was less than 1 Kbps for groups of size 100. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACM SIGCOMM Computer Communication Review Association for Computing Machinery

Loading next page...
 
/lp/association-for-computing-machinery/scalable-application-layer-multicast-czlw9XbILM

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Association for Computing Machinery
Copyright
Copyright © 2002 by ACM Inc.
ISSN
0146-4833
DOI
10.1145/964725.633045
Publisher site
See Article on Publisher Site

Abstract

We describe a new scalable application-layer multicast protocol, specifically designed for low-bandwidth, data streaming applications with large receiver sets. Our scheme is based upon a hierarchical clustering of the application-layer multicast peers and can support a number of different data delivery trees with desirable properties.We present extensive simulations of both our protocol and the Narada application-layer multicast protocol over Internet-like topologies. Our results show that for groups of size 32 or more, our protocol has lower link stress (by about 25%), improved or similar end-to-end latencies and similar failure recovery properties. More importantly, it is able to achieve these results by using orders of magnitude lower control traffic.Finally, we present results from our wide-area testbed in which we experimented with 32-100 member groups distributed over 8 different sites. In our experiments, average group members established and maintained low-latency paths and incurred a maximum packet loss rate of less than 1% as members randomly joined and left the multicast group. The average control overhead during our experiments was less than 1 Kbps for groups of size 100.

Journal

ACM SIGCOMM Computer Communication ReviewAssociation for Computing Machinery

Published: Oct 1, 2002

There are no references for this article.