Access the full text.
Sign up today, get DeepDyve free for 14 days.
D. Grigoriev (2001)
Linear lower bound on degrees of Positivstellensatz calculus proofs for the parityTheor. Comput. Sci., 259
Michael Alekhnovich, A. Razborov (2002)
Satisfiability, Branch-Width and Tseitin tautologiescomputational complexity, 20
A. Gál, P. Pudlák (2003)
A note on monotone complexity and the rank of matricesInf. Process. Lett., 87
T. Pitassi, Nathan Segerlind (2009)
Exponential Lower Bounds and Integrality Gaps for Tree-Like Lovász-Schrijver ProceduresElectron. Colloquium Comput. Complex., TR07
J. Krajícek (1997)
Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmeticJournal of Symbolic Logic, 62
Armin Haken (1985)
The Intractability of ResolutionTheor. Comput. Sci., 39
P. Pudlák (1997)
Lower bounds for resolution and cutting plane proofs and monotone computationsJournal of Symbolic Logic, 62
T. Rothvoss (2013)
The matching polytope has exponential extension complexityProceedings of the forty-sixth annual ACM symposium on Theory of computing
A. Schrijver (1986)
Theory of linear and integer programming
Czech Republickrajicek (2007)
Interpolation Theorems, Lower Bounds for Proof Systems, and Independence Results for Bounded Arithmetic
Alexander A. Razborov (1990)
Lower bounds for monotone complexity of boolean functionsAm. Math. Soc. Transl, 147
P. Beame, R. Impagliazzo, J. Krajícek, T. Pitassi, P. Pudlák (1994)
Lower bounds on Hilbert's Nullstellensatz and propositional proofsProceedings 35th Annual Symposium on Foundations of Computer Science
M. Braverman, Ankur Moitra (2013)
An information complexity approach to extended formulationsElectron. Colloquium Comput. Complex., TR12
S. Buss, T. Pitassi (1996)
Good degree bounds on Nullstellensatz refutations of the induction principleProceedings of Computational Complexity (Formerly Structure in Complexity Theory)
R. Raz, A. Wigderson (1992)
Monotone circuits for matching require linear depthJ. ACM, 39
Dima Grigoriev, Edward A Hirsch, Dmitrii V Pasechnik (2002)
Complexity of semi-algebraic proofsProceedings of the Annual Symposium on Theoretical Aspects of Computer Science. Springer
A. Razborov (2016)
Guest Column: Proof Complexity and BeyondSIGACT News, 47
Gábor Braun, Samuel Fiorini, S. Pokutta, David Steurer (2012)
Approximation Limits of Linear Programs (Beyond Hierarchies)2012 IEEE 53rd Annual Symposium on Foundations of Computer Science
M. Karchmer, A. Wigderson (1993)
On span programs[1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference
Samuel R. Buss, Toniann Pitassi (1998)
Good degree bounds on Nullstellensatz refutations of the induction principleJ. Comput. Syst. Sci., 57
Samuel Fiorini, S. Massar, S. Pokutta, Hans Tiwary, R. Wolf (2011)
Exponential Lower Bounds for Polytopes in Combinatorial OptimizationJournal of the ACM (JACM), 62
A. Gál (1998)
A characterization of span program size and improved lower bounds for monotone span programscomputational complexity, 10
(2017)
Representations of monotone Boolean functions by linear programs
Pavel Pudlák (1999)
On the complexity of the propositional calculusSets and Proofs
Robert Robere, T. Pitassi, Benjamin Rossman, S. Cook (2016)
Exponential Lower Bounds for Monotone Span Programs2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)
P. Pudlák (1999)
Sets and Proofs: On the Complexity of the Propositional Calculus
Xudong Fu (1996)
Lower bounds on sizes of cutting plane proofs for modular coloring principles
Arist Kojevnikov, D. Itsykson (2006)
Lower Bounds of Static Lovász-Schrijver Calculus Proofs for Tseitin Tautologies
L. Lovász, A. Schrijver (1991)
Cones of Matrices and Set-Functions and 0-1 OptimizationSIAM J. Optim., 1
(1995)
Unprovability of circuit size lower bounds in certain fragments of bounded arithmetic
Michael Alekhnovich, Alexander A. Razborov (2002)
Satisfiability, branch-width and Tseitin tautologiesProceedings of the 43rd Symposium on Foundations of Computer Science (FOCS’02)
Paul Beame, Russell Impagliazzo, Jan Krajíček, Toniann Pitassi, Pavel Pudlák (1996)
Lower bounds on Hilbert’s Nullstellensatz and propositional proofsProc. Lond. Math. Soc., 3
László Babai, Anna Gál, A. Wigderson (1996)
Superpolynomial Lower Bounds for Monotone Span ProgramsCombinatorica, 19
P. Pudlák, J. Sgall (1996)
Algebraic models of computation and interpolation for algebraic proof systems
R. Impagliazzo, P. Pudlák, J. Sgall (1999)
Lower bounds for the polynomial calculus and the Gröbner basis algorithmcomputational complexity, 8
Albert Atserias, Jakob Nordström, T. Pitassi, A. Razborov (2018)
Proof Complexity and BeyondOberwolfach Reports
D. Grigoriev, E. Hirsch, D. Pasechnik (2002)
Complexity of Semi-algebraic ProofsElectron. Colloquium Comput. Complex., TR01
Armin Haken, S. Cook (1999)
An Exponential Lower Bound for the Size of Monotone Real CircuitsJ. Comput. Syst. Sci., 58
A. Razborov (1985)
Lower bounds on monotone complexity of the logical permanentMathematical notes of the Academy of Sciences of the USSR, 37
M. Goemans (2015)
Smallest compact formulation for the permutahedronMathematical Programming, 153
S. Dash (2005)
Exponential Lower Bounds on the Lengths of Some Classes of Branch-and-Cut ProofsMath. Oper. Res., 30
J. Krajícek (2002)
Interpolation and Approximate Semantic DerivationsMath. Log. Q., 48
Maria Bonet, T. Pitassi, R. Raz (1995)
Lower bounds for cutting planes proofs with small coefficientsJournal of Symbolic Logic, 62
A. Schrijver (2003)
Combinatorial optimization. Polyhedra and efficiency.
We introduce the notion of monotone linear programming circuits (MLP circuits), a model of computation for partial Boolean functions. Using this model, we prove the following results.1 (1) MLP circuits are superpolynomially stronger than monotone Boolean circuits. (2) MLP circuits are exponentially stronger than monotone span programs over the reals. (3) MLP circuits can be used to provide monotone feasibility interpolation theorems for Lovász-Schrijver proof systems and for mixed Lovász-Schrijver proof systems. (4) The Lovász-Schrijver proof system cannot be polynomially simulated by the cutting planes proof system. Finally, we establish connections between the problem of proving lower bounds for the size of MLP circuits and the field of extension complexity of polytopes.
ACM Transactions on Computation Theory (TOCT) – Association for Computing Machinery
Published: Jul 20, 2019
Keywords: Lovász-Schrijver proof systems
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.