Access the full text.
Sign up today, get DeepDyve free for 14 days.
Untrustworthy content such as fake news and clickbait have become a pervasive problem on the Internet, causing significant socio-political problems around the world. Identifying untrustworthy content is a crucial step in countering them. The current best practices for identification involve content analysis and arduous fact-checking of the content. To complement content analysis, we propose examining websites’ third-parties to identify their trustworthiness. Websites utilize third-parties, also known as their digital supply chains, to create and present content and help the website function. Third-parties are an important indication of a website's business model. Similar websites exhibit similarities in the third-parties they use. Using this perspective, we use machine learning and heuristic methods to discern similarities and dissimilarities in third-party usage, which we use to predict trustworthiness of websites. We demonstrate the effectiveness and robustness of our approach in predicting trustworthiness of websites from a database of News, Fake News, and Clickbait websites. Our approach can be easily and cost-effectively implemented to reinforce current identification methods.
ACM Transactions on Management Information Systems (TMIS) – Association for Computing Machinery
Published: Jul 30, 2020
Keywords: Website third-parties
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.