Path sharing and predicate evaluation for high-performance XML filtering

Path sharing and predicate evaluation for high-performance XML filtering XML filtering systems aim to provide fast, on-the-fly matching of XML-encoded data to large numbers of query specifications containing constraints on both structure and content. It is now well accepted that approaches using event-based parsing and Finite State Machines (FSMs) can provide the basis for highly scalable structure-oriented XML filtering systems. The XFilter system Altinel and Franklin 2000 was the first published FSM-based XML filtering approach. XFilter used a separate FSM per path query and a novel indexing mechanism to allow all of the FSMs to be executed simultaneously during the processing of a document. Building on the insights of the XFilter work, we describe a new method, called "YFilter" that combines all of the path queries into a single Nondeterministic Finite Automaton (NFA). YFilter exploits commonality among queries by merging common prefixes of the query paths such that they are processed at most once. The resulting shared processing provides tremendous improvements in structure matching performance but complicates the handling of value-based predicates.In this article, we first describe the XFilter and YFilter approaches and present results of a detailed performance comparison of structure matching for these algorithms as well as a hybrid approach. The results show that the path sharing employed by YFilter can provide order-of-magnitude performance benefits. We then propose two alternative techniques for extending YFilter's shared structure matching with support for value-based predicates, and compare the performance of these two techniques. The results of this latter study demonstrate some key differences between shared XML filtering and traditional database query processing. Finally, we describe how the YFilter approach is extended to handle more complicated queries containing nested path expressions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACM Transactions on Database Systems (TODS) Association for Computing Machinery

Path sharing and predicate evaluation for high-performance XML filtering

Loading next page...
 
/lp/association-for-computing-machinery/path-sharing-and-predicate-evaluation-for-high-performance-xml-v1Nrde0GZY
Publisher
Association for Computing Machinery
Copyright
Copyright © 2003 by ACM Inc.
ISSN
0362-5915
DOI
10.1145/958942.958947
Publisher site
See Article on Publisher Site

Abstract

XML filtering systems aim to provide fast, on-the-fly matching of XML-encoded data to large numbers of query specifications containing constraints on both structure and content. It is now well accepted that approaches using event-based parsing and Finite State Machines (FSMs) can provide the basis for highly scalable structure-oriented XML filtering systems. The XFilter system Altinel and Franklin 2000 was the first published FSM-based XML filtering approach. XFilter used a separate FSM per path query and a novel indexing mechanism to allow all of the FSMs to be executed simultaneously during the processing of a document. Building on the insights of the XFilter work, we describe a new method, called "YFilter" that combines all of the path queries into a single Nondeterministic Finite Automaton (NFA). YFilter exploits commonality among queries by merging common prefixes of the query paths such that they are processed at most once. The resulting shared processing provides tremendous improvements in structure matching performance but complicates the handling of value-based predicates.In this article, we first describe the XFilter and YFilter approaches and present results of a detailed performance comparison of structure matching for these algorithms as well as a hybrid approach. The results show that the path sharing employed by YFilter can provide order-of-magnitude performance benefits. We then propose two alternative techniques for extending YFilter's shared structure matching with support for value-based predicates, and compare the performance of these two techniques. The results of this latter study demonstrate some key differences between shared XML filtering and traditional database query processing. Finally, we describe how the YFilter approach is extended to handle more complicated queries containing nested path expressions.

Journal

ACM Transactions on Database Systems (TODS)Association for Computing Machinery

Published: Dec 1, 2003

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off