Access the full text.
Sign up today, get DeepDyve free for 14 days.
Multilabel Relationship Learning YU ZHANG, Hong Kong Baptist University DIT-YAN YEUNG, Hong Kong University of Science and Technology Multilabel learning problems are commonly found in many applications. A characteristic shared by many multilabel learning problems is that some labels have significant correlations between them. In this article, we propose a novel multilabel learning method, called MultiLabel Relationship Learning (MLRL), which extends the conventional support vector machine by explicitly learning and utilizing the relationships between labels. Specifically, we model the label relationships using a label covariance matrix and use it to define a new regularization term for the optimization problem. MLRL learns the model parameters and the label covariance matrix simultaneously based on a unified convex formulation. To solve the convex optimization problem, we use an alternating method in which each subproblem can be solved efficiently. The relationship between MLRL and two widely used maximum margin methods for multilabel learning is investigated. Moreover, we also propose a semisupervised extension of MLRL, called SSMLRL, to demonstrate how to make use of unlabeled data to help learn the label covariance matrix. Through experiments conducted on some multilabel applications, we find that MLRL not only gives higher classification accuracy but also has
ACM Transactions on Knowledge Discovery from Data (TKDD) – Association for Computing Machinery
Published: Jul 1, 2013
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.