Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
We prove a simple, nearly tight lower bound on the approximate degree of the two-level AND-OR tree using symmetrization arguments. Specifically, we show that deg(ANDm ORn) = (√mn). We prove this lower bound via reduction to the OR function through a series of symmetrization steps, in contrast to most other proofs that involve formulating approximate degree as a linear program [6, 10, 21]. Our proof also demonstrates the power of a symmetrization technique involving Laurent polynomials (polynomials with negative exponents) that was previously introduced by Aaronson et al. [2].
ACM Transactions on Computation Theory (TOCT) – Association for Computing Machinery
Published: Jan 21, 2021
Keywords: AND-OR tree
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.