Access the full text.
Sign up today, get DeepDyve free for 14 days.
Incremental Learning of Daily Routines as Workflows in a Smart Home Environment BERARDINA DE CAROLIS, STEFANO FERILLI, and DOMENICO REDAVID, University of Bari Smart home environments should proactively support users in their activities, anticipating their needs according to their preferences. Understanding what the user is doing in the environment is important for adapting the environment's behavior, as well as for identifying situations that could be problematic for the user. Enabling the environment to exploit models of the user's most common behaviors is an important step toward this objective. In particular, models of the daily routines of a user can be exploited not only for predicting his/her needs, but also for comparing the actual situation at a given moment with the expected one, in order to detect anomalies in his/her behavior. While manually setting up process models in business and factory environments may be cost-effective, building models of the processes involved in people's everyday life is infeasible. This fact fully justifies the interest of the Ambient Intelligence community in automatically learning such models from examples of actual behavior. Incremental adaptation of the models and the ability to express/learn complex conditions on the involved tasks are also desirable. This article
ACM Transactions on Interactive Intelligent Systems (TiiS) – Association for Computing Machinery
Published: Jan 28, 2015
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.