Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Enki

Enki Data-driven Learning-enabled Systems are limited by the quality of available training data, particularly when trained offline. For systems that must operate in real-world environments, the space of possible conditions that can occur is vast and difficult to comprehensively predict at design time. Environmental uncertainty arises when run-time conditions diverge from design-time training conditions. To address this problem, automated methods can generate synthetic data to fill in gaps for training and test data coverage. We propose an evolution-based technique to assist developers with uncovering limitations in existing data when previously unseen environmental phenomena are introduced. This technique explores unique contexts for a given environmental condition, with an emphasis on diversity. Synthetic data generated by this technique may be used for two purposes: (1) to assess the robustness of a system to uncertain environmental factors and (2) to improve the system’s robustness. This technique is demonstrated to outperform random and greedy methods for multiple adverse environmental conditions applied to image-processing Deep Neural Networks. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACM Transactions on Autonomous and Adaptive Systems (TAAS) Association for Computing Machinery

Loading next page...
 
/lp/association-for-computing-machinery/enki-i8EvZKcY0n
Publisher
Association for Computing Machinery
Copyright
Copyright © 2021 ACM
ISSN
1556-4665
eISSN
1556-4703
DOI
10.1145/3460959
Publisher site
See Article on Publisher Site

Abstract

Data-driven Learning-enabled Systems are limited by the quality of available training data, particularly when trained offline. For systems that must operate in real-world environments, the space of possible conditions that can occur is vast and difficult to comprehensively predict at design time. Environmental uncertainty arises when run-time conditions diverge from design-time training conditions. To address this problem, automated methods can generate synthetic data to fill in gaps for training and test data coverage. We propose an evolution-based technique to assist developers with uncovering limitations in existing data when previously unseen environmental phenomena are introduced. This technique explores unique contexts for a given environmental condition, with an emphasis on diversity. Synthetic data generated by this technique may be used for two purposes: (1) to assess the robustness of a system to uncertain environmental factors and (2) to improve the system’s robustness. This technique is demonstrated to outperform random and greedy methods for multiple adverse environmental conditions applied to image-processing Deep Neural Networks.

Journal

ACM Transactions on Autonomous and Adaptive Systems (TAAS)Association for Computing Machinery

Published: May 29, 2021

Keywords: Evolutionary computation

References