“Whoa! It’s like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Try 2 weeks free now

Automatic translation of FORTRAN programs to vector form

The recent success of vector computers such as the Cray-1 and array processors such as those manufactured by Floating Point Systems has increased interest in making vector operations available to the FORTRAN programmer. The FORTRAN standards committee is currently considering a successor to FORTRAN 77, usually called FORTRAN 8x, that will permit the programmer to explicitly specify vector and array operations. Although FORTRAN 8x will make it convenient to specify explicit vector operations in new programs, it does little for existing code. In order to benefit from the power of vector hardware, existing programs will need to be rewritten in some language (presumably FORTRAN 8x) that permits the explicit specification of vector operations. One way to avoid a massive manual recoding effort is to provide a translator that discovers the parallelism implicit in a FORTRAN program and automatically rewrites that program in FORTRAN 8x. Such a translation from FORTRAN to FORTRAN 8x is not straightforward because FORTRAN DO loops are not always semantically equivalent to the corresponding FORTRAN 8x parallel operation. The semantic difference between these two constructs is precisely captured by the concept of dependence . A translation from FORTRAN to FORTRAN 8x preserves the semantics of the original program if it preserves the dependences in that program. The theoretical background is developed here for employing data dependence to convert FORTRAN programs to parallel form. Dependence is defined and characterized in terms of the conditions that give rise to it; accurate tests to determine dependence are presented; and transformations that use dependence to uncover additional parallelism are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACM Transactions on Programming Languages and Systems (TOPLAS) Association for Computing Machinery

Loading next page...

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy unlimited access and
personalized recommendations from
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $40/month

Try 2 weeks free now

Explore the DeepDyve Library

How DeepDyve Works

Spend time researching, not time worrying you’re buying articles that might not be useful.

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.

All the latest content is available, no embargo periods.

See the journals in your area

Simple and Affordable Pricing

14-day free trial. Cancel anytime, with a 30-day money-back guarantee.

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Best Deal — 25% off

Annual Plan

  • All the features of the Professional Plan, but for 25% off!
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

billed annually