Access the full text.
Sign up today, get DeepDyve free for 14 days.
This study uses complexity theory to understand the causal patterns of factors that stimulate students intention to continue studies in computer science (CS). To this end, it identifies gains and barriers as essential factors in CS education, including motivation and learning performance, and proposes a conceptual model along with research propositions. To test its propositions, the study employs fuzzy-set qualitative comparative analysis on a data sample from 344 students. Findings indicate eight configurations of cognitive and noncognitive gains, barriers, motivation for studies, and learning performance that explain high intention to continue studies in CS. This research study contributes to the literature by (1) offering new insights into the relationships among the predictors of CS students intention to continue their studies and (2) advancing the theoretical foundation of how students gains, barriers, motivation, and learning performance combine to better explain high intentions to continue CS studies.
ACM Transactions on Computing Education (TOCE) – Association for Computing Machinery
Published: May 23, 2017
Keywords: Higher education
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.