Weak-field few-femtosecond VUV photodissociation dynamics of water isotopologues

Weak-field few-femtosecond VUV photodissociation dynamics of water isotopologues We present a joint experimental and theoretical study of the VUV-induced dynamics of H2O and its deuterated isotopologues in the first excited state (Ã1B1) utilizing a VUV-pump VUV-probe scheme combined with ab initio classical trajectory calculations. 16-fs VUV pulses centered at 161 nm created by fifth-order harmonic generation are employed for single-shot pump-probe measurements. Combined with a precise determination of the VUV pulses' temporal profile, they provide the necessary temporal resolution to elucidate sub-10-fs dissociation dynamics in the 1+1 photon ionization time window. Ionization with a single VUV photon complements established strong-field ionization schemes by disclosing the molecular dynamics under perturbative conditions. Kinetic isotope effects derived from the pump-probe experiment are found to be in agreement with our by ab initio classical trajectory calculations, taking into account photoionization cross sections for the ground and first excited state of the water cation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Weak-field few-femtosecond VUV photodissociation dynamics of water isotopologues

Preview Only

Weak-field few-femtosecond VUV photodissociation dynamics of water isotopologues

Abstract

We present a joint experimental and theoretical study of the VUV-induced dynamics of H2O and its deuterated isotopologues in the first excited state (Ã1B1) utilizing a VUV-pump VUV-probe scheme combined with ab initio classical trajectory calculations. 16-fs VUV pulses centered at 161 nm created by fifth-order harmonic generation are employed for single-shot pump-probe measurements. Combined with a precise determination of the VUV pulses' temporal profile, they provide the necessary temporal resolution to elucidate sub-10-fs dissociation dynamics in the 1+1 photon ionization time window. Ionization with a single VUV photon complements established strong-field ionization schemes by disclosing the molecular dynamics under perturbative conditions. Kinetic isotope effects derived from the pump-probe experiment are found to be in agreement with our by ab initio classical trajectory calculations, taking into account photoionization cross sections for the ground and first excited state of the water cation.
Loading next page...
 
/lp/aps_physical/weak-field-few-femtosecond-vuv-photodissociation-dynamics-of-water-cT8FrbfJFj
Publisher
The American Physical Society
Copyright
Copyright © Published by the American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.013428
Publisher site
See Article on Publisher Site

Abstract

We present a joint experimental and theoretical study of the VUV-induced dynamics of H2O and its deuterated isotopologues in the first excited state (Ã1B1) utilizing a VUV-pump VUV-probe scheme combined with ab initio classical trajectory calculations. 16-fs VUV pulses centered at 161 nm created by fifth-order harmonic generation are employed for single-shot pump-probe measurements. Combined with a precise determination of the VUV pulses' temporal profile, they provide the necessary temporal resolution to elucidate sub-10-fs dissociation dynamics in the 1+1 photon ionization time window. Ionization with a single VUV photon complements established strong-field ionization schemes by disclosing the molecular dynamics under perturbative conditions. Kinetic isotope effects derived from the pump-probe experiment are found to be in agreement with our by ab initio classical trajectory calculations, taking into account photoionization cross sections for the ground and first excited state of the water cation.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Jul 27, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off