Wave-packet continuum-discretization approach to single ionization of helium by antiprotons and energetic protons

Wave-packet continuum-discretization approach to single ionization of helium by antiprotons and... The recently developed wave-packet continuum-discretization approach [I. B. Abdurakhmanov, A. S. Kadyrov, and I. Bray, Phys. Rev. A 94, 022703 (2016)2469-992610.1103/PhysRevA.94.022703] is extended to antiproton-helium collisions. The helium target is treated as a three-body Coulomb system using a frozen-core approximation, in which the electron-electron correlation within the target is accounted for through the static interaction. The Schrödinger equation for the helium target is solved numerically to yield bound and continuum states of the active electron. The resulting continuum state is used to construct wave-packet pseudostates with arbitrary energies. The energies of the pseudostates are chosen in a way that is ideal for detailed differential ionization studies. Two-electron target wave functions, formed from the bound and continuum wave-packet states of the active electron and the 1s orbital of He+, are then utilized in the single-center semiclassical impact-parameter close-coupling scheme. A comprehensive set of benchmark results, from angle-integrated to fully differential cross sections for antiproton impact single ionization of helium in the energy range from 1 keV to 1 MeV, is provided. Furthermore, we use our single-center convergent close-coupling approach to study fully differential single ionization of helium by 1-MeV proton impact. The calculated results are in good agreement with recent experimental measurements [H. Gassert, O. Chuluunbaatar, M. Waitz, F. Trinter, H.-K. Kim, T. Bauer, A. Laucke, C. Müller, J. Voigtsberger, M. Weller , Phys. Rev. Lett. 116, 073201 (2016)PRLTAO0031-900710.1103/PhysRevLett.116.073201] for all considered geometries. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Wave-packet continuum-discretization approach to single ionization of helium by antiprotons and energetic protons

Preview Only

Wave-packet continuum-discretization approach to single ionization of helium by antiprotons and energetic protons

Abstract

The recently developed wave-packet continuum-discretization approach [I. B. Abdurakhmanov, A. S. Kadyrov, and I. Bray, Phys. Rev. A 94, 022703 (2016)2469-992610.1103/PhysRevA.94.022703] is extended to antiproton-helium collisions. The helium target is treated as a three-body Coulomb system using a frozen-core approximation, in which the electron-electron correlation within the target is accounted for through the static interaction. The Schrödinger equation for the helium target is solved numerically to yield bound and continuum states of the active electron. The resulting continuum state is used to construct wave-packet pseudostates with arbitrary energies. The energies of the pseudostates are chosen in a way that is ideal for detailed differential ionization studies. Two-electron target wave functions, formed from the bound and continuum wave-packet states of the active electron and the 1s orbital of He+, are then utilized in the single-center semiclassical impact-parameter close-coupling scheme. A comprehensive set of benchmark results, from angle-integrated to fully differential cross sections for antiproton impact single ionization of helium in the energy range from 1 keV to 1 MeV, is provided. Furthermore, we use our single-center convergent close-coupling approach to study fully differential single ionization of helium by 1-MeV proton impact. The calculated results are in good agreement with recent experimental measurements [H. Gassert, O. Chuluunbaatar, M. Waitz, F. Trinter, H.-K. Kim, T. Bauer, A. Laucke, C. Müller, J. Voigtsberger, M. Weller , Phys. Rev. Lett. 116, 073201 (2016)PRLTAO0031-900710.1103/PhysRevLett.116.073201] for all considered geometries.
Loading next page...
 
/lp/aps_physical/wave-packet-continuum-discretization-approach-to-single-ionization-of-MIC0sXD0Lj
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.022702
Publisher site
See Article on Publisher Site

Abstract

The recently developed wave-packet continuum-discretization approach [I. B. Abdurakhmanov, A. S. Kadyrov, and I. Bray, Phys. Rev. A 94, 022703 (2016)2469-992610.1103/PhysRevA.94.022703] is extended to antiproton-helium collisions. The helium target is treated as a three-body Coulomb system using a frozen-core approximation, in which the electron-electron correlation within the target is accounted for through the static interaction. The Schrödinger equation for the helium target is solved numerically to yield bound and continuum states of the active electron. The resulting continuum state is used to construct wave-packet pseudostates with arbitrary energies. The energies of the pseudostates are chosen in a way that is ideal for detailed differential ionization studies. Two-electron target wave functions, formed from the bound and continuum wave-packet states of the active electron and the 1s orbital of He+, are then utilized in the single-center semiclassical impact-parameter close-coupling scheme. A comprehensive set of benchmark results, from angle-integrated to fully differential cross sections for antiproton impact single ionization of helium in the energy range from 1 keV to 1 MeV, is provided. Furthermore, we use our single-center convergent close-coupling approach to study fully differential single ionization of helium by 1-MeV proton impact. The calculated results are in good agreement with recent experimental measurements [H. Gassert, O. Chuluunbaatar, M. Waitz, F. Trinter, H.-K. Kim, T. Bauer, A. Laucke, C. Müller, J. Voigtsberger, M. Weller , Phys. Rev. Lett. 116, 073201 (2016)PRLTAO0031-900710.1103/PhysRevLett.116.073201] for all considered geometries.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Aug 4, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off