Wave-packet continuum-discretization approach to single ionization of helium by antiprotons and energetic protons

Wave-packet continuum-discretization approach to single ionization of helium by antiprotons and... The recently developed wave-packet continuum-discretization approach [I. B. Abdurakhmanov, A. S. Kadyrov, and I. Bray, Phys. Rev. A 94, 022703 (2016)2469-992610.1103/PhysRevA.94.022703] is extended to antiproton-helium collisions. The helium target is treated as a three-body Coulomb system using a frozen-core approximation, in which the electron-electron correlation within the target is accounted for through the static interaction. The Schrödinger equation for the helium target is solved numerically to yield bound and continuum states of the active electron. The resulting continuum state is used to construct wave-packet pseudostates with arbitrary energies. The energies of the pseudostates are chosen in a way that is ideal for detailed differential ionization studies. Two-electron target wave functions, formed from the bound and continuum wave-packet states of the active electron and the 1s orbital of He+, are then utilized in the single-center semiclassical impact-parameter close-coupling scheme. A comprehensive set of benchmark results, from angle-integrated to fully differential cross sections for antiproton impact single ionization of helium in the energy range from 1 keV to 1 MeV, is provided. Furthermore, we use our single-center convergent close-coupling approach to study fully differential single ionization of helium by 1-MeV proton impact. The calculated results are in good agreement with recent experimental measurements [H. Gassert, O. Chuluunbaatar, M. Waitz, F. Trinter, H.-K. Kim, T. Bauer, A. Laucke, C. Müller, J. Voigtsberger, M. Weller , Phys. Rev. Lett. 116, 073201 (2016)PRLTAO0031-900710.1103/PhysRevLett.116.073201] for all considered geometries. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Wave-packet continuum-discretization approach to single ionization of helium by antiprotons and energetic protons

Preview Only

Wave-packet continuum-discretization approach to single ionization of helium by antiprotons and energetic protons

Abstract

The recently developed wave-packet continuum-discretization approach [I. B. Abdurakhmanov, A. S. Kadyrov, and I. Bray, Phys. Rev. A 94, 022703 (2016)2469-992610.1103/PhysRevA.94.022703] is extended to antiproton-helium collisions. The helium target is treated as a three-body Coulomb system using a frozen-core approximation, in which the electron-electron correlation within the target is accounted for through the static interaction. The Schrödinger equation for the helium target is solved numerically to yield bound and continuum states of the active electron. The resulting continuum state is used to construct wave-packet pseudostates with arbitrary energies. The energies of the pseudostates are chosen in a way that is ideal for detailed differential ionization studies. Two-electron target wave functions, formed from the bound and continuum wave-packet states of the active electron and the 1s orbital of He+, are then utilized in the single-center semiclassical impact-parameter close-coupling scheme. A comprehensive set of benchmark results, from angle-integrated to fully differential cross sections for antiproton impact single ionization of helium in the energy range from 1 keV to 1 MeV, is provided. Furthermore, we use our single-center convergent close-coupling approach to study fully differential single ionization of helium by 1-MeV proton impact. The calculated results are in good agreement with recent experimental measurements [H. Gassert, O. Chuluunbaatar, M. Waitz, F. Trinter, H.-K. Kim, T. Bauer, A. Laucke, C. Müller, J. Voigtsberger, M. Weller , Phys. Rev. Lett. 116, 073201 (2016)PRLTAO0031-900710.1103/PhysRevLett.116.073201] for all considered geometries.
Loading next page...
 
/lp/aps_physical/wave-packet-continuum-discretization-approach-to-single-ionization-of-MIC0sXD0Lj
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.022702
Publisher site
See Article on Publisher Site

Abstract

The recently developed wave-packet continuum-discretization approach [I. B. Abdurakhmanov, A. S. Kadyrov, and I. Bray, Phys. Rev. A 94, 022703 (2016)2469-992610.1103/PhysRevA.94.022703] is extended to antiproton-helium collisions. The helium target is treated as a three-body Coulomb system using a frozen-core approximation, in which the electron-electron correlation within the target is accounted for through the static interaction. The Schrödinger equation for the helium target is solved numerically to yield bound and continuum states of the active electron. The resulting continuum state is used to construct wave-packet pseudostates with arbitrary energies. The energies of the pseudostates are chosen in a way that is ideal for detailed differential ionization studies. Two-electron target wave functions, formed from the bound and continuum wave-packet states of the active electron and the 1s orbital of He+, are then utilized in the single-center semiclassical impact-parameter close-coupling scheme. A comprehensive set of benchmark results, from angle-integrated to fully differential cross sections for antiproton impact single ionization of helium in the energy range from 1 keV to 1 MeV, is provided. Furthermore, we use our single-center convergent close-coupling approach to study fully differential single ionization of helium by 1-MeV proton impact. The calculated results are in good agreement with recent experimental measurements [H. Gassert, O. Chuluunbaatar, M. Waitz, F. Trinter, H.-K. Kim, T. Bauer, A. Laucke, C. Müller, J. Voigtsberger, M. Weller , Phys. Rev. Lett. 116, 073201 (2016)PRLTAO0031-900710.1103/PhysRevLett.116.073201] for all considered geometries.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Aug 4, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off