Vortex lattice melting in a boson ladder in an artificial gauge field

Vortex lattice melting in a boson ladder in an artificial gauge field We consider a two-leg boson ladder in an artificial U(1) gauge field and show that, in the presence of interleg attractive interaction, the flux induced vortex state can be melted by dislocations. For increasing flux, instead of the Meissner to vortex transition in the commensurate-incommensurate universality class, first, an Ising transition from the Meissner state to a charge density wave takes place, then, at higher flux, the melted vortex phase is established via a disorder point where incommensuration develops in the rung current correlation function and in momentum distribution. Finally, the quasi-long-range ordered vortex phase is recovered for sufficiently small interaction. Our predictions for the observables, such as the spin current and the static structure factor, could be tested in current experiments with cold atoms in bosonic ladders. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Vortex lattice melting in a boson ladder in an artificial gauge field

Preview Only

Vortex lattice melting in a boson ladder in an artificial gauge field

Abstract

We consider a two-leg boson ladder in an artificial U(1) gauge field and show that, in the presence of interleg attractive interaction, the flux induced vortex state can be melted by dislocations. For increasing flux, instead of the Meissner to vortex transition in the commensurate-incommensurate universality class, first, an Ising transition from the Meissner state to a charge density wave takes place, then, at higher flux, the melted vortex phase is established via a disorder point where incommensuration develops in the rung current correlation function and in momentum distribution. Finally, the quasi-long-range ordered vortex phase is recovered for sufficiently small interaction. Our predictions for the observables, such as the spin current and the static structure factor, could be tested in current experiments with cold atoms in bosonic ladders.
Loading next page...
 
/lp/aps_physical/vortex-lattice-melting-in-a-boson-ladder-in-an-artificial-gauge-field-0Dw0kkyI0J
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.014518
Publisher site
See Article on Publisher Site

Abstract

We consider a two-leg boson ladder in an artificial U(1) gauge field and show that, in the presence of interleg attractive interaction, the flux induced vortex state can be melted by dislocations. For increasing flux, instead of the Meissner to vortex transition in the commensurate-incommensurate universality class, first, an Ising transition from the Meissner state to a charge density wave takes place, then, at higher flux, the melted vortex phase is established via a disorder point where incommensuration develops in the rung current correlation function and in momentum distribution. Finally, the quasi-long-range ordered vortex phase is recovered for sufficiently small interaction. Our predictions for the observables, such as the spin current and the static structure factor, could be tested in current experiments with cold atoms in bosonic ladders.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 25, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off