Vibrational dynamics of a two-dimensional microgranular crystal

Vibrational dynamics of a two-dimensional microgranular crystal We study the dynamics of an ordered hexagonal monolayer of polystyrene microspheres adhered to a glass substrate coated with a thin aluminum layer. A laser-induced transient grating technique is employed to generate and detect three types of acoustic modes across the entire Brillouin zone in the Γ−K direction: low-frequency contact-based modes of the granular monolayer, high-frequency modes originating from spheroidal vibrations of the microspheres, and surface Rayleigh waves. The dispersion relation of contact-based and spheroidal modes indicates that they are collective modes of the microgranular crystal controlled by particle-particle contacts. We observe a spheroidal resonance splitting caused by the symmetry breaking due to the substrate, as well as an avoided crossing between the Rayleigh and spheroidal modes. The measurements are found to be in agreement with our analytical model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Vibrational dynamics of a two-dimensional microgranular crystal

Preview Only

Vibrational dynamics of a two-dimensional microgranular crystal

Abstract

We study the dynamics of an ordered hexagonal monolayer of polystyrene microspheres adhered to a glass substrate coated with a thin aluminum layer. A laser-induced transient grating technique is employed to generate and detect three types of acoustic modes across the entire Brillouin zone in the Γ−K direction: low-frequency contact-based modes of the granular monolayer, high-frequency modes originating from spheroidal vibrations of the microspheres, and surface Rayleigh waves. The dispersion relation of contact-based and spheroidal modes indicates that they are collective modes of the microgranular crystal controlled by particle-particle contacts. We observe a spheroidal resonance splitting caused by the symmetry breaking due to the substrate, as well as an avoided crossing between the Rayleigh and spheroidal modes. The measurements are found to be in agreement with our analytical model.
Loading next page...
 
/lp/aps_physical/vibrational-dynamics-of-a-two-dimensional-microgranular-crystal-d7X8cDt00x
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.024303
Publisher site
See Article on Publisher Site

Abstract

We study the dynamics of an ordered hexagonal monolayer of polystyrene microspheres adhered to a glass substrate coated with a thin aluminum layer. A laser-induced transient grating technique is employed to generate and detect three types of acoustic modes across the entire Brillouin zone in the Γ−K direction: low-frequency contact-based modes of the granular monolayer, high-frequency modes originating from spheroidal vibrations of the microspheres, and surface Rayleigh waves. The dispersion relation of contact-based and spheroidal modes indicates that they are collective modes of the microgranular crystal controlled by particle-particle contacts. We observe a spheroidal resonance splitting caused by the symmetry breaking due to the substrate, as well as an avoided crossing between the Rayleigh and spheroidal modes. The measurements are found to be in agreement with our analytical model.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 24, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial