Using Hilbert transform and classical chains to simulate quantum walks

Using Hilbert transform and classical chains to simulate quantum walks We propose a simulation strategy which uses a classical device of linearly coupled chain of springs to simulate quantum dynamics, in particular quantum walks. Through this strategy, we obtain the quantum wave function from the classical evolution. Specially, this goal is achieved with the classical momenta of the particles on the chain and their Hilbert transform, from which we construct the many-body momentum and Hilbert transformed momentum pair correlation functions yielding the real and imaginary parts of the wave function, respectively. With such a wave function, we show that the classical chain's energy and heat spreading densities can be related to the wave function's modulus square. This relation provides a new perspective to understand ballistic heat transport. The results here may give a definite answer to Feynman's idea of using a classical device to simulate quantum physics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Using Hilbert transform and classical chains to simulate quantum walks

Preview Only

Using Hilbert transform and classical chains to simulate quantum walks

Abstract

We propose a simulation strategy which uses a classical device of linearly coupled chain of springs to simulate quantum dynamics, in particular quantum walks. Through this strategy, we obtain the quantum wave function from the classical evolution. Specially, this goal is achieved with the classical momenta of the particles on the chain and their Hilbert transform, from which we construct the many-body momentum and Hilbert transformed momentum pair correlation functions yielding the real and imaginary parts of the wave function, respectively. With such a wave function, we show that the classical chain's energy and heat spreading densities can be related to the wave function's modulus square. This relation provides a new perspective to understand ballistic heat transport. The results here may give a definite answer to Feynman's idea of using a classical device to simulate quantum physics.
Loading next page...
 
/lp/aps_physical/using-hilbert-transform-and-classical-chains-to-simulate-quantum-walks-9vmJLdVBk0
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.022114
Publisher site
See Article on Publisher Site

Abstract

We propose a simulation strategy which uses a classical device of linearly coupled chain of springs to simulate quantum dynamics, in particular quantum walks. Through this strategy, we obtain the quantum wave function from the classical evolution. Specially, this goal is achieved with the classical momenta of the particles on the chain and their Hilbert transform, from which we construct the many-body momentum and Hilbert transformed momentum pair correlation functions yielding the real and imaginary parts of the wave function, respectively. With such a wave function, we show that the classical chain's energy and heat spreading densities can be related to the wave function's modulus square. This relation provides a new perspective to understand ballistic heat transport. The results here may give a definite answer to Feynman's idea of using a classical device to simulate quantum physics.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Aug 8, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off