Universal behavior of electron g-factors in semiconductor nanostructures

Universal behavior of electron g-factors in semiconductor nanostructures We combine analytic developments and numerical tight-binding calculations to study the evolution of the electron g-factors in homogeneous nanostructures of III-V and II-VI semiconductors. We demonstrate that the g-factor can be always written as a sum of bulk and surface terms. The bulk term, the dominant one, just depends on the energy gap of the nanostructure but is otherwise isotropic and independent of size, shape, and dimensionality. At the same time, the magnetic moment density at the origin of the bulk term is anisotropic and strongly dependents on the nanostructure shape. The physical origin of these seemingly contradictory findings is explained by the relation between the spin-orbit-induced currents and the spatial derivatives of the electron envelope wave function. The tight-binding calculations show that the g-factor versus energy gap for spherical nanocrystals can be used as a reference curve. In quantum wells, nanoplatelets, nanorods, and nanowires, the g-factor along the rotational symmetry axis can be predicted from the reference curve with a good accuracy. The g-factors along nonsymmetric axes exhibit more important deviations due to surface contributions but the energy gap remains the main quantity determining their evolution. The importance of surface-induced anisotropies of the g-factors is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Universal behavior of electron g-factors in semiconductor nanostructures

Preview Only

Universal behavior of electron g-factors in semiconductor nanostructures

Abstract

We combine analytic developments and numerical tight-binding calculations to study the evolution of the electron g-factors in homogeneous nanostructures of III-V and II-VI semiconductors. We demonstrate that the g-factor can be always written as a sum of bulk and surface terms. The bulk term, the dominant one, just depends on the energy gap of the nanostructure but is otherwise isotropic and independent of size, shape, and dimensionality. At the same time, the magnetic moment density at the origin of the bulk term is anisotropic and strongly dependents on the nanostructure shape. The physical origin of these seemingly contradictory findings is explained by the relation between the spin-orbit-induced currents and the spatial derivatives of the electron envelope wave function. The tight-binding calculations show that the g-factor versus energy gap for spherical nanocrystals can be used as a reference curve. In quantum wells, nanoplatelets, nanorods, and nanowires, the g-factor along the rotational symmetry axis can be predicted from the reference curve with a good accuracy. The g-factors along nonsymmetric axes exhibit more important deviations due to surface contributions but the energy gap remains the main quantity determining their evolution. The importance of surface-induced anisotropies of the g-factors is discussed.
Loading next page...
 
/lp/aps_physical/universal-behavior-of-electron-g-factors-in-semiconductor-IMHsidwrV1
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.95.235437
Publisher site
See Article on Publisher Site

Abstract

We combine analytic developments and numerical tight-binding calculations to study the evolution of the electron g-factors in homogeneous nanostructures of III-V and II-VI semiconductors. We demonstrate that the g-factor can be always written as a sum of bulk and surface terms. The bulk term, the dominant one, just depends on the energy gap of the nanostructure but is otherwise isotropic and independent of size, shape, and dimensionality. At the same time, the magnetic moment density at the origin of the bulk term is anisotropic and strongly dependents on the nanostructure shape. The physical origin of these seemingly contradictory findings is explained by the relation between the spin-orbit-induced currents and the spatial derivatives of the electron envelope wave function. The tight-binding calculations show that the g-factor versus energy gap for spherical nanocrystals can be used as a reference curve. In quantum wells, nanoplatelets, nanorods, and nanowires, the g-factor along the rotational symmetry axis can be predicted from the reference curve with a good accuracy. The g-factors along nonsymmetric axes exhibit more important deviations due to surface contributions but the energy gap remains the main quantity determining their evolution. The importance of surface-induced anisotropies of the g-factors is discussed.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jun 30, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial