Uniqueness of the Fock quantization of Dirac fields in 2+1 dimensions

Uniqueness of the Fock quantization of Dirac fields in 2+1 dimensions We study the Fock quantization of a free Dirac field in 2+1-dimensional backgrounds which are conformally ultrastatic, with a time-dependent conformal factor. As it is typical for field theories, there is an infinite ambiguity in the Fock representation of the canonical anticommutation relations. Different choices may lead to unitarily inequivalent theories that describe different physics. To remove this ambiguity one usually requires that the vacuum be invariant under the unitary transformations that implement the symmetries of the equations of motion. However, in nonstationary backgrounds, where time translation is not a symmetry transformation, the requirement of vacuum invariance is in general not enough to fix completely the Fock representation. We show that this problem is overcome in the considered scenario by demanding, in addition, a unitarily implementable nontrivial quantum dynamics. The combined imposition of these conditions selects a unique family of equivalent Fock representations. Moreover, one also obtains an essentially unique splitting of the time variation of the Dirac field into an explicit dependence on the background scale factor and a quantum evolution of the corresponding creation and annihilation operators. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Uniqueness of the Fock quantization of Dirac fields in 2+1 dimensions

Preview Only

Uniqueness of the Fock quantization of Dirac fields in 2+1 dimensions

Abstract

We study the Fock quantization of a free Dirac field in 2+1-dimensional backgrounds which are conformally ultrastatic, with a time-dependent conformal factor. As it is typical for field theories, there is an infinite ambiguity in the Fock representation of the canonical anticommutation relations. Different choices may lead to unitarily inequivalent theories that describe different physics. To remove this ambiguity one usually requires that the vacuum be invariant under the unitary transformations that implement the symmetries of the equations of motion. However, in nonstationary backgrounds, where time translation is not a symmetry transformation, the requirement of vacuum invariance is in general not enough to fix completely the Fock representation. We show that this problem is overcome in the considered scenario by demanding, in addition, a unitarily implementable nontrivial quantum dynamics. The combined imposition of these conditions selects a unique family of equivalent Fock representations. Moreover, one also obtains an essentially unique splitting of the time variation of the Dirac field into an explicit dependence on the background scale factor and a quantum evolution of the corresponding creation and annihilation operators.
Loading next page...
 
/lp/aps_physical/uniqueness-of-the-fock-quantization-of-dirac-fields-in-2-1-dimensions-pdGGgG70BR
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.96.025024
Publisher site
See Article on Publisher Site

Abstract

We study the Fock quantization of a free Dirac field in 2+1-dimensional backgrounds which are conformally ultrastatic, with a time-dependent conformal factor. As it is typical for field theories, there is an infinite ambiguity in the Fock representation of the canonical anticommutation relations. Different choices may lead to unitarily inequivalent theories that describe different physics. To remove this ambiguity one usually requires that the vacuum be invariant under the unitary transformations that implement the symmetries of the equations of motion. However, in nonstationary backgrounds, where time translation is not a symmetry transformation, the requirement of vacuum invariance is in general not enough to fix completely the Fock representation. We show that this problem is overcome in the considered scenario by demanding, in addition, a unitarily implementable nontrivial quantum dynamics. The combined imposition of these conditions selects a unique family of equivalent Fock representations. Moreover, one also obtains an essentially unique splitting of the time variation of the Dirac field into an explicit dependence on the background scale factor and a quantum evolution of the corresponding creation and annihilation operators.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Jul 15, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial