Ultrafast sublattice pseudospin relaxation in graphene probed by polarization-resolved photoluminescence

Ultrafast sublattice pseudospin relaxation in graphene probed by polarization-resolved... Electronic pseudospin degrees of freedom in two-dimensional materials exhibit unique carrier-field interactions which allow for advanced control strategies. Here, we investigate ultrafast sublattice pseudospin relaxation in graphene by means of polarization-resolved photoluminescence spectroscopy. A comparison with microscopic Boltzmann simulations allows us to determine a lifetime of the optically aligned pseudospin distribution of 12±2fs. This experimental approach extends the toolbox of graphene pseudospintronics, providing additional means to investigate pseudospin dynamics in active devices or under external fields. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Ultrafast sublattice pseudospin relaxation in graphene probed by polarization-resolved photoluminescence

Preview Only

Ultrafast sublattice pseudospin relaxation in graphene probed by polarization-resolved photoluminescence

Abstract

Electronic pseudospin degrees of freedom in two-dimensional materials exhibit unique carrier-field interactions which allow for advanced control strategies. Here, we investigate ultrafast sublattice pseudospin relaxation in graphene by means of polarization-resolved photoluminescence spectroscopy. A comparison with microscopic Boltzmann simulations allows us to determine a lifetime of the optically aligned pseudospin distribution of 12±2fs. This experimental approach extends the toolbox of graphene pseudospintronics, providing additional means to investigate pseudospin dynamics in active devices or under external fields.
Loading next page...
 
/lp/aps_physical/ultrafast-sublattice-pseudospin-relaxation-in-graphene-probed-by-Q0noxlL5P8
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.95.241412
Publisher site
See Article on Publisher Site

Abstract

Electronic pseudospin degrees of freedom in two-dimensional materials exhibit unique carrier-field interactions which allow for advanced control strategies. Here, we investigate ultrafast sublattice pseudospin relaxation in graphene by means of polarization-resolved photoluminescence spectroscopy. A comparison with microscopic Boltzmann simulations allows us to determine a lifetime of the optically aligned pseudospin distribution of 12±2fs. This experimental approach extends the toolbox of graphene pseudospintronics, providing additional means to investigate pseudospin dynamics in active devices or under external fields.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jun 30, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off