Ultrafast momentum imaging of pseudospin-flip excitations in graphene

Ultrafast momentum imaging of pseudospin-flip excitations in graphene The pseudospin of Dirac electrons in graphene manifests itself in a peculiar momentum anisotropy for photoexcited electron-hole pairs. These interband excitations are in fact forbidden along the direction of the light polarization and are maximum perpendicular to it. Here, we use time- and angle-resolved photoemission spectroscopy to investigate the resulting unconventional hot carrier dynamics, sampling carrier distributions as a function of energy, and in-plane momentum. We first show that the rapidly-established quasithermal electron distribution initially exhibits an azimuth-dependent temperature, consistent with relaxation through collinear electron-electron scattering. Azimuthal thermalization is found to occur only at longer time delays, at a rate that depends on the substrate and the static doping level. Further, we observe pronounced differences in the electron and hole dynamics in n-doped samples. By simulating the Coulomb- and phonon-mediated carrier dynamics we are able to disentangle the influence of excitation fluence, screening, and doping, and develop a microscopic picture of the carrier dynamics in photoexcited graphene. Our results clarify new aspects of hot carrier dynamics that are unique to Dirac materials, with relevance for photocontrol experiments and optoelectronic device applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Ultrafast momentum imaging of pseudospin-flip excitations in graphene

Preview Only

Ultrafast momentum imaging of pseudospin-flip excitations in graphene

Abstract

The pseudospin of Dirac electrons in graphene manifests itself in a peculiar momentum anisotropy for photoexcited electron-hole pairs. These interband excitations are in fact forbidden along the direction of the light polarization and are maximum perpendicular to it. Here, we use time- and angle-resolved photoemission spectroscopy to investigate the resulting unconventional hot carrier dynamics, sampling carrier distributions as a function of energy, and in-plane momentum. We first show that the rapidly-established quasithermal electron distribution initially exhibits an azimuth-dependent temperature, consistent with relaxation through collinear electron-electron scattering. Azimuthal thermalization is found to occur only at longer time delays, at a rate that depends on the substrate and the static doping level. Further, we observe pronounced differences in the electron and hole dynamics in n-doped samples. By simulating the Coulomb- and phonon-mediated carrier dynamics we are able to disentangle the influence of excitation fluence, screening, and doping, and develop a microscopic picture of the carrier dynamics in photoexcited graphene. Our results clarify new aspects of hot carrier dynamics that are unique to Dirac materials, with relevance for photocontrol experiments and optoelectronic device applications.
Loading next page...
 
/lp/aps_physical/ultrafast-momentum-imaging-of-pseudospin-flip-excitations-in-graphene-IV3vpzrFO0
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.020301
Publisher site
See Article on Publisher Site

Abstract

The pseudospin of Dirac electrons in graphene manifests itself in a peculiar momentum anisotropy for photoexcited electron-hole pairs. These interband excitations are in fact forbidden along the direction of the light polarization and are maximum perpendicular to it. Here, we use time- and angle-resolved photoemission spectroscopy to investigate the resulting unconventional hot carrier dynamics, sampling carrier distributions as a function of energy, and in-plane momentum. We first show that the rapidly-established quasithermal electron distribution initially exhibits an azimuth-dependent temperature, consistent with relaxation through collinear electron-electron scattering. Azimuthal thermalization is found to occur only at longer time delays, at a rate that depends on the substrate and the static doping level. Further, we observe pronounced differences in the electron and hole dynamics in n-doped samples. By simulating the Coulomb- and phonon-mediated carrier dynamics we are able to disentangle the influence of excitation fluence, screening, and doping, and develop a microscopic picture of the carrier dynamics in photoexcited graphene. Our results clarify new aspects of hot carrier dynamics that are unique to Dirac materials, with relevance for photocontrol experiments and optoelectronic device applications.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 10, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off