Two-body problem in scalar-tensor theories as a deformation of general relativity: An effective-one-body approach

Two-body problem in scalar-tensor theories as a deformation of general relativity: An... In this paper we address the two-body problem in massless scalar-tensor (ST) theories within an effective-one-body (EOB) framework. We focus on the first building block of the EOB approach, that is, mapping the conservative part of the two-body dynamics onto the geodesic motion of a test particle in an effective external metric. To this end, we first deduce the second post-Keplerian (2PK) Hamiltonian of the two-body problem from the known 2PK Lagrangian. We then build, by means of a canonical transformation, a ST deformation of the general relativistic EOB Hamiltonian that allows us to incorporate the scalar-tensor (2PK) corrections to the currently best available general relativity EOB results. This EOB-ST Hamiltonian defines a resummation of the dynamics that may provide information on the strong-field regime, in particular, the ISCO location and associated orbital frequency, and can be compared to, other, e.g., tidal, corrections. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Two-body problem in scalar-tensor theories as a deformation of general relativity: An effective-one-body approach

Preview Only

Two-body problem in scalar-tensor theories as a deformation of general relativity: An effective-one-body approach

Abstract

In this paper we address the two-body problem in massless scalar-tensor (ST) theories within an effective-one-body (EOB) framework. We focus on the first building block of the EOB approach, that is, mapping the conservative part of the two-body dynamics onto the geodesic motion of a test particle in an effective external metric. To this end, we first deduce the second post-Keplerian (2PK) Hamiltonian of the two-body problem from the known 2PK Lagrangian. We then build, by means of a canonical transformation, a ST deformation of the general relativistic EOB Hamiltonian that allows us to incorporate the scalar-tensor (2PK) corrections to the currently best available general relativity EOB results. This EOB-ST Hamiltonian defines a resummation of the dynamics that may provide information on the strong-field regime, in particular, the ISCO location and associated orbital frequency, and can be compared to, other, e.g., tidal, corrections.
Loading next page...
 
/lp/aps_physical/two-body-problem-in-scalar-tensor-theories-as-a-deformation-of-general-2a26LfE0ni
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.95.124054
Publisher site
See Article on Publisher Site

Abstract

In this paper we address the two-body problem in massless scalar-tensor (ST) theories within an effective-one-body (EOB) framework. We focus on the first building block of the EOB approach, that is, mapping the conservative part of the two-body dynamics onto the geodesic motion of a test particle in an effective external metric. To this end, we first deduce the second post-Keplerian (2PK) Hamiltonian of the two-body problem from the known 2PK Lagrangian. We then build, by means of a canonical transformation, a ST deformation of the general relativistic EOB Hamiltonian that allows us to incorporate the scalar-tensor (2PK) corrections to the currently best available general relativity EOB results. This EOB-ST Hamiltonian defines a resummation of the dynamics that may provide information on the strong-field regime, in particular, the ISCO location and associated orbital frequency, and can be compared to, other, e.g., tidal, corrections.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Jun 15, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off