Tunneling ionization of the F4 and D6 states of vanadium: Exchange blockade

Tunneling ionization of the F4 and D6 states of vanadium: Exchange blockade Using time-dependent density functional theory (TDDFT) calculations, we compare tunneling ionization of the aF4 ground state and the aD6 first excited state of vanadium in laser fields of intensities between 1.4 and 4.0×1013Wcm−2. The calculated ionization yields of the ground state of vanadium were already shown to agree well with experimental results [Chu and Groenenboom, Phys. Rev. A 94, 053417 (2016)2469-992610.1103/PhysRevA.94.053417]. We find that the tunneling ionization rate of the sextet state is lower than that of the quartet state. This is surprising, since the ionization potential of the sextet is lower than that of the quartet state. This finding, however, is consistent with the experimental observation that niobium, whose ground state is a6D1/2, has a much smaller ionization yield than vanadium (a4F3/2), even though their ionization potentials are extremely close [Smits et al., Phys. Rev. Lett. 93, 213003 (2004)PRLTAO0031-900710.1103/PhysRevLett.93.213003]. Our calculations demonstrate the existence of exchange blockade for the higher spin state. It arises from a strong field dynamic effect that mixes the highest and second highest electrons in the same set of unoccupied spin orbitals, which causes an isotropic attractive potential that confines the electrons close to the core. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Tunneling ionization of the F4 and D6 states of vanadium: Exchange blockade

Preview Only

Tunneling ionization of the F4 and D6 states of vanadium: Exchange blockade

Abstract

Using time-dependent density functional theory (TDDFT) calculations, we compare tunneling ionization of the aF4 ground state and the aD6 first excited state of vanadium in laser fields of intensities between 1.4 and 4.0×1013Wcm−2. The calculated ionization yields of the ground state of vanadium were already shown to agree well with experimental results [Chu and Groenenboom, Phys. Rev. A 94, 053417 (2016)2469-992610.1103/PhysRevA.94.053417]. We find that the tunneling ionization rate of the sextet state is lower than that of the quartet state. This is surprising, since the ionization potential of the sextet is lower than that of the quartet state. This finding, however, is consistent with the experimental observation that niobium, whose ground state is a6D1/2, has a much smaller ionization yield than vanadium (a4F3/2), even though their ionization potentials are extremely close [Smits et al., Phys. Rev. Lett. 93, 213003 (2004)PRLTAO0031-900710.1103/PhysRevLett.93.213003]. Our calculations demonstrate the existence of exchange blockade for the higher spin state. It arises from a strong field dynamic effect that mixes the highest and second highest electrons in the same set of unoccupied spin orbitals, which causes an isotropic attractive potential that confines the electrons close to the core.
Loading next page...
 
/lp/aps_physical/tunneling-ionization-of-the-f4-and-d6-states-of-vanadium-exchange-U94x9O6VIJ
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.013421
Publisher site
See Article on Publisher Site

Abstract

Using time-dependent density functional theory (TDDFT) calculations, we compare tunneling ionization of the aF4 ground state and the aD6 first excited state of vanadium in laser fields of intensities between 1.4 and 4.0×1013Wcm−2. The calculated ionization yields of the ground state of vanadium were already shown to agree well with experimental results [Chu and Groenenboom, Phys. Rev. A 94, 053417 (2016)2469-992610.1103/PhysRevA.94.053417]. We find that the tunneling ionization rate of the sextet state is lower than that of the quartet state. This is surprising, since the ionization potential of the sextet is lower than that of the quartet state. This finding, however, is consistent with the experimental observation that niobium, whose ground state is a6D1/2, has a much smaller ionization yield than vanadium (a4F3/2), even though their ionization potentials are extremely close [Smits et al., Phys. Rev. Lett. 93, 213003 (2004)PRLTAO0031-900710.1103/PhysRevLett.93.213003]. Our calculations demonstrate the existence of exchange blockade for the higher spin state. It arises from a strong field dynamic effect that mixes the highest and second highest electrons in the same set of unoccupied spin orbitals, which causes an isotropic attractive potential that confines the electrons close to the core.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Jul 20, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off