Tunable Short-Wavelength Spin-Wave Emission and Confinement in Anisotropy-Modulated Multiferroic Heterostructures

Tunable Short-Wavelength Spin-Wave Emission and Confinement in Anisotropy-Modulated Multiferroic... We report on the generation and confinement of short-wavelength spin waves in a continuous film with periodically modulated magnetic anisotropy. The concept, which is demonstrated for strain-coupled Co40Fe40B20/BaTiO3 heterostructures, relies on abrupt rotation of magnetic anisotropy at the boundaries of magnetic stripe domains. In combination with an external bias field, this modulation of magnetic anisotropy produces a lateral variation of the effective magnetic field, leading to local spin-wave excitation when irradiated by a microwave magnetic field. In domains with small effective field, spin waves are perfectly confined by the spin gap in neighboring domains. In contrast, standing spin waves in domains with large effective field radiate into neighboring domains. Using micromagnetic simulation, we show that the wavelength of emitted spin waves is tunable from a few micrometers down to about 100 nm by rotation of the bias field. Importantly, the orientation of the wave front remains fixed. We also demonstrate that dynamic fluctuations of the effective magnetic field produce exchange-dominated spin waves at single-anisotropy boundaries. The multiferroic heterostructures presented here enable the use of global excitation fields from a microwave antenna to emit tunable spin waves from a nanometer-wide line source at well-defined locations of a continuous ferromagnetic film. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Applied American Physical Society (APS)

Tunable Short-Wavelength Spin-Wave Emission and Confinement in Anisotropy-Modulated Multiferroic Heterostructures

Preview Only

Tunable Short-Wavelength Spin-Wave Emission and Confinement in Anisotropy-Modulated Multiferroic Heterostructures

Abstract

We report on the generation and confinement of short-wavelength spin waves in a continuous film with periodically modulated magnetic anisotropy. The concept, which is demonstrated for strain-coupled Co40Fe40B20/BaTiO3 heterostructures, relies on abrupt rotation of magnetic anisotropy at the boundaries of magnetic stripe domains. In combination with an external bias field, this modulation of magnetic anisotropy produces a lateral variation of the effective magnetic field, leading to local spin-wave excitation when irradiated by a microwave magnetic field. In domains with small effective field, spin waves are perfectly confined by the spin gap in neighboring domains. In contrast, standing spin waves in domains with large effective field radiate into neighboring domains. Using micromagnetic simulation, we show that the wavelength of emitted spin waves is tunable from a few micrometers down to about 100 nm by rotation of the bias field. Importantly, the orientation of the wave front remains fixed. We also demonstrate that dynamic fluctuations of the effective magnetic field produce exchange-dominated spin waves at single-anisotropy boundaries. The multiferroic heterostructures presented here enable the use of global excitation fields from a microwave antenna to emit tunable spin waves from a nanometer-wide line source at well-defined locations of a continuous ferromagnetic film.
Loading next page...
 
/lp/aps_physical/tunable-short-wavelength-spin-wave-emission-and-confinement-in-6A0ytDTiuW
Publisher
American Physical Society (APS)
Copyright
Copyright © © 2017 American Physical Society
eISSN
2331-7019
D.O.I.
10.1103/PhysRevApplied.8.014020
Publisher site
See Article on Publisher Site

Abstract

We report on the generation and confinement of short-wavelength spin waves in a continuous film with periodically modulated magnetic anisotropy. The concept, which is demonstrated for strain-coupled Co40Fe40B20/BaTiO3 heterostructures, relies on abrupt rotation of magnetic anisotropy at the boundaries of magnetic stripe domains. In combination with an external bias field, this modulation of magnetic anisotropy produces a lateral variation of the effective magnetic field, leading to local spin-wave excitation when irradiated by a microwave magnetic field. In domains with small effective field, spin waves are perfectly confined by the spin gap in neighboring domains. In contrast, standing spin waves in domains with large effective field radiate into neighboring domains. Using micromagnetic simulation, we show that the wavelength of emitted spin waves is tunable from a few micrometers down to about 100 nm by rotation of the bias field. Importantly, the orientation of the wave front remains fixed. We also demonstrate that dynamic fluctuations of the effective magnetic field produce exchange-dominated spin waves at single-anisotropy boundaries. The multiferroic heterostructures presented here enable the use of global excitation fields from a microwave antenna to emit tunable spin waves from a nanometer-wide line source at well-defined locations of a continuous ferromagnetic film.

Journal

Physical Review AppliedAmerican Physical Society (APS)

Published: Jul 1, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off