Tripartite entangled plaquette state in a cluster magnet

Tripartite entangled plaquette state in a cluster magnet Using large-scale quantum Monte Carlo simulations we show that a spin-12XXZ model on a two-dimensional anisotropic kagome lattice exhibits a tripartite entangled plaquette state that preserves all of the Hamiltonian symmetries. It is connected via phase boundaries to a ferromagnet and a valence-bond solid that break U(1) and lattice translation symmetries, respectively. We study the phase diagram of the model in detail, in particular the transitions to the tripartite entangled plaquette state, which are consistent with conventional order-disorder transitions. Our results can be interpreted as a description of the charge sector dynamics of a Hubbard model applied to the spin liquid candidate LiZn2Mo3O8, as well as a model of strongly correlated bosonic atoms loaded onto highly tunable trimerized optical kagome lattices. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Tripartite entangled plaquette state in a cluster magnet

Preview Only

Tripartite entangled plaquette state in a cluster magnet

Abstract

Using large-scale quantum Monte Carlo simulations we show that a spin-12XXZ model on a two-dimensional anisotropic kagome lattice exhibits a tripartite entangled plaquette state that preserves all of the Hamiltonian symmetries. It is connected via phase boundaries to a ferromagnet and a valence-bond solid that break U(1) and lattice translation symmetries, respectively. We study the phase diagram of the model in detail, in particular the transitions to the tripartite entangled plaquette state, which are consistent with conventional order-disorder transitions. Our results can be interpreted as a description of the charge sector dynamics of a Hubbard model applied to the spin liquid candidate LiZn2Mo3O8, as well as a model of strongly correlated bosonic atoms loaded onto highly tunable trimerized optical kagome lattices.
Loading next page...
 
/lp/aps_physical/tripartite-entangled-plaquette-state-in-a-cluster-magnet-QLJds9JwIt
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.054405
Publisher site
See Article on Publisher Site

Abstract

Using large-scale quantum Monte Carlo simulations we show that a spin-12XXZ model on a two-dimensional anisotropic kagome lattice exhibits a tripartite entangled plaquette state that preserves all of the Hamiltonian symmetries. It is connected via phase boundaries to a ferromagnet and a valence-bond solid that break U(1) and lattice translation symmetries, respectively. We study the phase diagram of the model in detail, in particular the transitions to the tripartite entangled plaquette state, which are consistent with conventional order-disorder transitions. Our results can be interpreted as a description of the charge sector dynamics of a Hubbard model applied to the spin liquid candidate LiZn2Mo3O8, as well as a model of strongly correlated bosonic atoms loaded onto highly tunable trimerized optical kagome lattices.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Aug 4, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off