Tricritical behavior of the two-dimensional intrinsically ferromagnetic semiconductor CrGeTe3

Tricritical behavior of the two-dimensional intrinsically ferromagnetic semiconductor CrGeTe3 CrGeTe3 recently emerges as a new two-dimensional (2D) ferromagnetic semiconductor that is promising for spintronic device applications. Unlike CrSiTe3 whose magnetism can be understood using the 2D-Ising model, CrGeTe3 exhibits a smaller van der Waals gap and larger cleavage energy, which could lead to a transition of magnetic mechanism from 2D to 3D. To confirm this speculation, we investigate the critical behavior of CrGeTe3 around the second-order paramagnetic-ferromagnetic phase transition. We obtain the critical exponents estimated by several common experimental techniques including the modified Arrott plot, Kouvel-Fisher method, and critical isotherm analysis, which show that the magnetism of CrGeTe3 follows the tricritical mean-field model with the critical exponents β, γ, and δ of 0.240±0.006, 1.000±0.005, and 5.070±0.006, respectively, at the Curie temperature of 67.9 K. We therefore suggest that the magnetic phase transition from 2D to 3D for CrGeTe3 should locate near a tricritical point. Our experiment provides a direct demonstration of the applicability of the tricritical mean-field model to a 2D ferromagnetic semiconductor. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Tricritical behavior of the two-dimensional intrinsically ferromagnetic semiconductor CrGeTe3

Preview Only

Tricritical behavior of the two-dimensional intrinsically ferromagnetic semiconductor CrGeTe3

Abstract

CrGeTe3 recently emerges as a new two-dimensional (2D) ferromagnetic semiconductor that is promising for spintronic device applications. Unlike CrSiTe3 whose magnetism can be understood using the 2D-Ising model, CrGeTe3 exhibits a smaller van der Waals gap and larger cleavage energy, which could lead to a transition of magnetic mechanism from 2D to 3D. To confirm this speculation, we investigate the critical behavior of CrGeTe3 around the second-order paramagnetic-ferromagnetic phase transition. We obtain the critical exponents estimated by several common experimental techniques including the modified Arrott plot, Kouvel-Fisher method, and critical isotherm analysis, which show that the magnetism of CrGeTe3 follows the tricritical mean-field model with the critical exponents β, γ, and δ of 0.240±0.006, 1.000±0.005, and 5.070±0.006, respectively, at the Curie temperature of 67.9 K. We therefore suggest that the magnetic phase transition from 2D to 3D for CrGeTe3 should locate near a tricritical point. Our experiment provides a direct demonstration of the applicability of the tricritical mean-field model to a 2D ferromagnetic semiconductor.
Loading next page...
 
/lp/aps_physical/tricritical-behavior-of-the-two-dimensional-intrinsically-VZ2V0KiPye
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.95.245212
Publisher site
See Article on Publisher Site

Abstract

CrGeTe3 recently emerges as a new two-dimensional (2D) ferromagnetic semiconductor that is promising for spintronic device applications. Unlike CrSiTe3 whose magnetism can be understood using the 2D-Ising model, CrGeTe3 exhibits a smaller van der Waals gap and larger cleavage energy, which could lead to a transition of magnetic mechanism from 2D to 3D. To confirm this speculation, we investigate the critical behavior of CrGeTe3 around the second-order paramagnetic-ferromagnetic phase transition. We obtain the critical exponents estimated by several common experimental techniques including the modified Arrott plot, Kouvel-Fisher method, and critical isotherm analysis, which show that the magnetism of CrGeTe3 follows the tricritical mean-field model with the critical exponents β, γ, and δ of 0.240±0.006, 1.000±0.005, and 5.070±0.006, respectively, at the Curie temperature of 67.9 K. We therefore suggest that the magnetic phase transition from 2D to 3D for CrGeTe3 should locate near a tricritical point. Our experiment provides a direct demonstration of the applicability of the tricritical mean-field model to a 2D ferromagnetic semiconductor.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jun 30, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off