Transport through a Majorana Island in the Strong Tunneling Regime

Transport through a Majorana Island in the Strong Tunneling Regime In the presence of Rashba spin-orbit coupling, a magnetic field can drive a proximitized nanowire into a topological superconducting phase [R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010).PRLTAO0031-900710.1103/PhysRevLett.105.077001 and Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010).PRLTAO0031-900710.1103/PhysRevLett.105.177002]. We study the transport properties of such nanowires in the Coulomb blockade regime. The associated with topological superconductivity Majorana modes significantly modify transport and lead to single-electron coherent transmission through the nanowire—a nonlocal signature of topological superconductivity. In this Letter, we focus on the case of strong hybridization of the Majorana modes with normal leads. The induced by hybridization broadening of the Majorana zero-energy states competes with the charging energy, leading to a considerable modification of the Coulomb blockade in a nanowire contacted by two normal leads. We evaluate the two-terminal conductance as a function of the gate voltage, junctions transmission coefficients, and the geometric capacitance of and the induced superconducting gap in the nanowire. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Letters American Physical Society (APS)

Transport through a Majorana Island in the Strong Tunneling Regime

Preview Only

Transport through a Majorana Island in the Strong Tunneling Regime

Abstract

In the presence of Rashba spin-orbit coupling, a magnetic field can drive a proximitized nanowire into a topological superconducting phase [R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010).PRLTAO0031-900710.1103/PhysRevLett.105.077001 and Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010).PRLTAO0031-900710.1103/PhysRevLett.105.177002]. We study the transport properties of such nanowires in the Coulomb blockade regime. The associated with topological superconductivity Majorana modes significantly modify transport and lead to single-electron coherent transmission through the nanowire—a nonlocal signature of topological superconductivity. In this Letter, we focus on the case of strong hybridization of the Majorana modes with normal leads. The induced by hybridization broadening of the Majorana zero-energy states competes with the charging energy, leading to a considerable modification of the Coulomb blockade in a nanowire contacted by two normal leads. We evaluate the two-terminal conductance as a function of the gate voltage, junctions transmission coefficients, and the geometric capacitance of and the induced superconducting gap in the nanowire.
Loading next page...
 
/lp/aps_physical/transport-through-a-majorana-island-in-the-strong-tunneling-regime-jMHRF2a8rZ
Publisher
The American Physical Society
Copyright
Copyright © © 2017 American Physical Society
ISSN
0031-9007
eISSN
1079-7114
D.O.I.
10.1103/PhysRevLett.119.057002
Publisher site
See Article on Publisher Site

Abstract

In the presence of Rashba spin-orbit coupling, a magnetic field can drive a proximitized nanowire into a topological superconducting phase [R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010).PRLTAO0031-900710.1103/PhysRevLett.105.077001 and Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010).PRLTAO0031-900710.1103/PhysRevLett.105.177002]. We study the transport properties of such nanowires in the Coulomb blockade regime. The associated with topological superconductivity Majorana modes significantly modify transport and lead to single-electron coherent transmission through the nanowire—a nonlocal signature of topological superconductivity. In this Letter, we focus on the case of strong hybridization of the Majorana modes with normal leads. The induced by hybridization broadening of the Majorana zero-energy states competes with the charging energy, leading to a considerable modification of the Coulomb blockade in a nanowire contacted by two normal leads. We evaluate the two-terminal conductance as a function of the gate voltage, junctions transmission coefficients, and the geometric capacitance of and the induced superconducting gap in the nanowire.

Journal

Physical Review LettersAmerican Physical Society (APS)

Published: Aug 4, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off