Transport properties of iron at Earth's core conditions: The effect of spin disorder

Transport properties of iron at Earth's core conditions: The effect of spin disorder The electronic and thermal transport properties of the Earth's core are crucial for many geophysical models such as the geodynamo model of the Earth's magnetic field and of its reversals. Here we show, by considering bcc iron and an iron-rich iron-silicon alloy as a representative of the Earth's core composition and applying first-principles modeling, that the spin disorder at the Earth's core conditions not considered previously provides an essential contribution, of order 20 μΩ cm, to the electrical resistivity. This value is comparable in magnitude with the electron-phonon and with the recently estimated electron-electron scattering contributions. The origin of the spin-disorder resistivity (SDR) consists of the existence of fluctuating local moments that are stabilized at high temperatures by the magnetic entropy even at pressures at which the ground state of iron is nonmagnetic. We find that electron-phonon and SDR contributions are not additive at high temperatures. We thus observe a large violation of the Matthiessen rule, not common in conventional metallic alloys at ambient conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Transport properties of iron at Earth's core conditions: The effect of spin disorder

Preview Only

Transport properties of iron at Earth's core conditions: The effect of spin disorder

Abstract

The electronic and thermal transport properties of the Earth's core are crucial for many geophysical models such as the geodynamo model of the Earth's magnetic field and of its reversals. Here we show, by considering bcc iron and an iron-rich iron-silicon alloy as a representative of the Earth's core composition and applying first-principles modeling, that the spin disorder at the Earth's core conditions not considered previously provides an essential contribution, of order 20 μΩ cm, to the electrical resistivity. This value is comparable in magnitude with the electron-phonon and with the recently estimated electron-electron scattering contributions. The origin of the spin-disorder resistivity (SDR) consists of the existence of fluctuating local moments that are stabilized at high temperatures by the magnetic entropy even at pressures at which the ground state of iron is nonmagnetic. We find that electron-phonon and SDR contributions are not additive at high temperatures. We thus observe a large violation of the Matthiessen rule, not common in conventional metallic alloys at ambient conditions.
Loading next page...
 
/lp/aps_physical/transport-properties-of-iron-at-earth-s-core-conditions-the-effect-of-11AtxD90fC
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.024432
Publisher site
See Article on Publisher Site

Abstract

The electronic and thermal transport properties of the Earth's core are crucial for many geophysical models such as the geodynamo model of the Earth's magnetic field and of its reversals. Here we show, by considering bcc iron and an iron-rich iron-silicon alloy as a representative of the Earth's core composition and applying first-principles modeling, that the spin disorder at the Earth's core conditions not considered previously provides an essential contribution, of order 20 μΩ cm, to the electrical resistivity. This value is comparable in magnitude with the electron-phonon and with the recently estimated electron-electron scattering contributions. The origin of the spin-disorder resistivity (SDR) consists of the existence of fluctuating local moments that are stabilized at high temperatures by the magnetic entropy even at pressures at which the ground state of iron is nonmagnetic. We find that electron-phonon and SDR contributions are not additive at high temperatures. We thus observe a large violation of the Matthiessen rule, not common in conventional metallic alloys at ambient conditions.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 21, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off