Traces of nonequilibrium dynamics in relativistic heavy-ion collisions

Traces of nonequilibrium dynamics in relativistic heavy-ion collisions The impact of nonequilibrium effects on the dynamics of heavy-ion collisions is investigated by comparing a nonequilibrium transport approach, the Parton-Hadron-String-Dynamics (PHSD), to a 2D+1 viscous hydrodynamical model, which is based on the assumption of local equilibrium and conservation laws. Starting the hydrodynamical model from the same nonequilibrium initial condition as in the PHSD, using an equivalent lQCD equation of state (EoS), the same transport coefficients, i.e., shear viscosity η and the bulk viscosity ζ in the hydrodynamical model, we compare the time evolution of the system in terms of energy density, Fourier transformed energy density, spatial and momentum eccentricities, and ellipticity to quantify the traces of nonequilibrium phenomena. In addition, we also investigate the role of initial pre-equilibrium flow on the hydrodynamical evolution and demonstrate its importance for final state observables. We find that because of nonequilibrium effects, the event-by-event transport calculations show large fluctuations in the collective properties, while ensemble averaged observables are close to the hydrodynamical results. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review C American Physical Society (APS)

Traces of nonequilibrium dynamics in relativistic heavy-ion collisions

Preview Only

Traces of nonequilibrium dynamics in relativistic heavy-ion collisions

Abstract

The impact of nonequilibrium effects on the dynamics of heavy-ion collisions is investigated by comparing a nonequilibrium transport approach, the Parton-Hadron-String-Dynamics (PHSD), to a 2D+1 viscous hydrodynamical model, which is based on the assumption of local equilibrium and conservation laws. Starting the hydrodynamical model from the same nonequilibrium initial condition as in the PHSD, using an equivalent lQCD equation of state (EoS), the same transport coefficients, i.e., shear viscosity η and the bulk viscosity ζ in the hydrodynamical model, we compare the time evolution of the system in terms of energy density, Fourier transformed energy density, spatial and momentum eccentricities, and ellipticity to quantify the traces of nonequilibrium phenomena. In addition, we also investigate the role of initial pre-equilibrium flow on the hydrodynamical evolution and demonstrate its importance for final state observables. We find that because of nonequilibrium effects, the event-by-event transport calculations show large fluctuations in the collective properties, while ensemble averaged observables are close to the hydrodynamical results.
Loading next page...
 
/lp/aps_physical/traces-of-nonequilibrium-dynamics-in-relativistic-heavy-ion-collisions-l3gjTQwwe8
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
0556-2813
eISSN
1089-490X
D.O.I.
10.1103/PhysRevC.96.024902
Publisher site
See Article on Publisher Site

Abstract

The impact of nonequilibrium effects on the dynamics of heavy-ion collisions is investigated by comparing a nonequilibrium transport approach, the Parton-Hadron-String-Dynamics (PHSD), to a 2D+1 viscous hydrodynamical model, which is based on the assumption of local equilibrium and conservation laws. Starting the hydrodynamical model from the same nonequilibrium initial condition as in the PHSD, using an equivalent lQCD equation of state (EoS), the same transport coefficients, i.e., shear viscosity η and the bulk viscosity ζ in the hydrodynamical model, we compare the time evolution of the system in terms of energy density, Fourier transformed energy density, spatial and momentum eccentricities, and ellipticity to quantify the traces of nonequilibrium phenomena. In addition, we also investigate the role of initial pre-equilibrium flow on the hydrodynamical evolution and demonstrate its importance for final state observables. We find that because of nonequilibrium effects, the event-by-event transport calculations show large fluctuations in the collective properties, while ensemble averaged observables are close to the hydrodynamical results.

Journal

Physical Review CAmerican Physical Society (APS)

Published: Aug 8, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial