Topological Control on the Structural Relaxation of Atomic Networks under Stress

Topological Control on the Structural Relaxation of Atomic Networks under Stress Upon loading, atomic networks can feature delayed irreversible relaxation. However, the effect of composition and structure on relaxation remains poorly understood. Herein, relying on accelerated molecular dynamics simulations and topological constraint theory, we investigate the relationship between atomic topology and stress-induced structural relaxation, by taking the example of creep deformations in calcium silicate hydrates (C─S─H), the binding phase of concrete. Under constant shear stress, C─S─H is found to feature delayed logarithmic shear deformations. We demonstrate that the propensity for relaxation is minimum for isostatic atomic networks, which are characterized by the simultaneous absence of floppy internal modes of relaxation and eigenstress. This suggests that topological nanoengineering could lead to the discovery of nonaging materials. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review Letters American Physical Society (APS)

Topological Control on the Structural Relaxation of Atomic Networks under Stress

Preview Only

Topological Control on the Structural Relaxation of Atomic Networks under Stress

Abstract

Upon loading, atomic networks can feature delayed irreversible relaxation. However, the effect of composition and structure on relaxation remains poorly understood. Herein, relying on accelerated molecular dynamics simulations and topological constraint theory, we investigate the relationship between atomic topology and stress-induced structural relaxation, by taking the example of creep deformations in calcium silicate hydrates (C─S─H), the binding phase of concrete. Under constant shear stress, C─S─H is found to feature delayed logarithmic shear deformations. We demonstrate that the propensity for relaxation is minimum for isostatic atomic networks, which are characterized by the simultaneous absence of floppy internal modes of relaxation and eigenstress. This suggests that topological nanoengineering could lead to the discovery of nonaging materials.
Loading next page...
 
/lp/aps_physical/topological-control-on-the-structural-relaxation-of-atomic-networks-wLDuJpYSpN
Publisher
American Physical Society (APS)
Copyright
Copyright © © 2017 American Physical Society
ISSN
0031-9007
eISSN
1079-7114
D.O.I.
10.1103/PhysRevLett.119.035502
Publisher site
See Article on Publisher Site

Abstract

Upon loading, atomic networks can feature delayed irreversible relaxation. However, the effect of composition and structure on relaxation remains poorly understood. Herein, relying on accelerated molecular dynamics simulations and topological constraint theory, we investigate the relationship between atomic topology and stress-induced structural relaxation, by taking the example of creep deformations in calcium silicate hydrates (C─S─H), the binding phase of concrete. Under constant shear stress, C─S─H is found to feature delayed logarithmic shear deformations. We demonstrate that the propensity for relaxation is minimum for isostatic atomic networks, which are characterized by the simultaneous absence of floppy internal modes of relaxation and eigenstress. This suggests that topological nanoengineering could lead to the discovery of nonaging materials.

Journal

Physical Review LettersAmerican Physical Society (APS)

Published: Jul 21, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off