Three-dimensional telegrapher's equation and its fractional generalization

Three-dimensional telegrapher's equation and its fractional generalization We derive the three-dimensional telegrapher's equation out of a random walk model. The model is a three-dimensional version of the multistate random walk where the number of different states form a continuum representing the spatial directions that the walker can take. We set the general equations and solve them for isotropic and uniform walks which finally allows us to obtain the telegrapher's equation in three dimensions. We generalize the isotropic model and the telegrapher's equation to include fractional anomalous transport in three dimensions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review E American Physical Society (APS)

Three-dimensional telegrapher's equation and its fractional generalization

Preview Only

Three-dimensional telegrapher's equation and its fractional generalization

Abstract

We derive the three-dimensional telegrapher's equation out of a random walk model. The model is a three-dimensional version of the multistate random walk where the number of different states form a continuum representing the spatial directions that the walker can take. We set the general equations and solve them for isotropic and uniform walks which finally allows us to obtain the telegrapher's equation in three dimensions. We generalize the isotropic model and the telegrapher's equation to include fractional anomalous transport in three dimensions.
Loading next page...
 
/lp/aps_physical/three-dimensional-telegrapher-s-equation-and-its-fractional-RkWWgNa8ps
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1539-3755
eISSN
550-2376
D.O.I.
10.1103/PhysRevE.96.022101
Publisher site
See Article on Publisher Site

Abstract

We derive the three-dimensional telegrapher's equation out of a random walk model. The model is a three-dimensional version of the multistate random walk where the number of different states form a continuum representing the spatial directions that the walker can take. We set the general equations and solve them for isotropic and uniform walks which finally allows us to obtain the telegrapher's equation in three dimensions. We generalize the isotropic model and the telegrapher's equation to include fractional anomalous transport in three dimensions.

Journal

Physical Review EAmerican Physical Society (APS)

Published: Aug 1, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off