Thermomagnetic correlation lengths of strongly interacting matter in the Nambu-Jona-Lasinio model

Thermomagnetic correlation lengths of strongly interacting matter in the Nambu-Jona-Lasinio model We study the correlation length between test quarks with the same electric and color charges in the Nambu-Jona-Lasinio model, considering thermal and magnetic effects. We extract the correlation length from the quark correlation function. The latter is constructed from the probability amplitude to bring a given quark into the plasma once a previous one with the same quantum numbers is placed at a given distance apart. For temperatures below the transition temperature, the correlation length starts growing as the field strength increases to then decrease for large magnetic fields. For temperatures above the pseudocritical temperature, the correlation length continues increasing as the field strength increases. We found that such behavior can be understood as a competition between the tightening induced by the classical magnetic force versus the random thermal motion. For large enough temperatures, the increase of the occupation number contributes to the screening of the interaction between the test particles. The growth of the correlation distance with the magnetic field can be understood as due to the closer proximity between one of the test quarks and the ones popped up from the vacuum, which in turn appear due to the increase of the occupation number with the temperature. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Thermomagnetic correlation lengths of strongly interacting matter in the Nambu-Jona-Lasinio model

Preview Only

Thermomagnetic correlation lengths of strongly interacting matter in the Nambu-Jona-Lasinio model

Abstract

We study the correlation length between test quarks with the same electric and color charges in the Nambu-Jona-Lasinio model, considering thermal and magnetic effects. We extract the correlation length from the quark correlation function. The latter is constructed from the probability amplitude to bring a given quark into the plasma once a previous one with the same quantum numbers is placed at a given distance apart. For temperatures below the transition temperature, the correlation length starts growing as the field strength increases to then decrease for large magnetic fields. For temperatures above the pseudocritical temperature, the correlation length continues increasing as the field strength increases. We found that such behavior can be understood as a competition between the tightening induced by the classical magnetic force versus the random thermal motion. For large enough temperatures, the increase of the occupation number contributes to the screening of the interaction between the test particles. The growth of the correlation distance with the magnetic field can be understood as due to the closer proximity between one of the test quarks and the ones popped up from the vacuum, which in turn appear due to the increase of the occupation number with the temperature.
Loading next page...
 
/lp/aps_physical/thermomagnetic-correlation-lengths-of-strongly-interacting-matter-in-x5kRmKjmED
Publisher
American Physical Society (APS)
Copyright
Copyright © © 2017 American Physical Society
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.96.034007
Publisher site
See Article on Publisher Site

Abstract

We study the correlation length between test quarks with the same electric and color charges in the Nambu-Jona-Lasinio model, considering thermal and magnetic effects. We extract the correlation length from the quark correlation function. The latter is constructed from the probability amplitude to bring a given quark into the plasma once a previous one with the same quantum numbers is placed at a given distance apart. For temperatures below the transition temperature, the correlation length starts growing as the field strength increases to then decrease for large magnetic fields. For temperatures above the pseudocritical temperature, the correlation length continues increasing as the field strength increases. We found that such behavior can be understood as a competition between the tightening induced by the classical magnetic force versus the random thermal motion. For large enough temperatures, the increase of the occupation number contributes to the screening of the interaction between the test particles. The growth of the correlation distance with the magnetic field can be understood as due to the closer proximity between one of the test quarks and the ones popped up from the vacuum, which in turn appear due to the increase of the occupation number with the temperature.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Aug 1, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off