Thermal transport in a one-dimensional Z2 spin liquid

Thermal transport in a one-dimensional Z2 spin liquid We study the dynamical thermal conductivity of the Kitaev spin model on a two-leg ladder. In contrast to the majority of conventional one-dimensional spin systems, we show the ladder to exhibit no ballistic channel and a zero-frequency pseudogap. This is a direct consequence of the fractionalization of spins into mobile Majorana matter and a static Z2 gauge field, which acts as an emergent thermally activated disorder. Our finding rests on complementary calculations of the current correlation function, comprising a phenomenological mean-field treatment of thermal gauge fluctuations, a complete summation over all gauge sectors, as well as exact diagonalization of the original spin model. The results will also be contrasted against the conductivity discarding gauge fluctuations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Thermal transport in a one-dimensional Z2 spin liquid

Preview Only

Thermal transport in a one-dimensional Z2 spin liquid

Abstract

We study the dynamical thermal conductivity of the Kitaev spin model on a two-leg ladder. In contrast to the majority of conventional one-dimensional spin systems, we show the ladder to exhibit no ballistic channel and a zero-frequency pseudogap. This is a direct consequence of the fractionalization of spins into mobile Majorana matter and a static Z2 gauge field, which acts as an emergent thermally activated disorder. Our finding rests on complementary calculations of the current correlation function, comprising a phenomenological mean-field treatment of thermal gauge fluctuations, a complete summation over all gauge sectors, as well as exact diagonalization of the original spin model. The results will also be contrasted against the conductivity discarding gauge fluctuations.
Loading next page...
 
/lp/aps_physical/thermal-transport-in-a-one-dimensional-z2-spin-liquid-awB5fF7fmG
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.041115
Publisher site
See Article on Publisher Site

Abstract

We study the dynamical thermal conductivity of the Kitaev spin model on a two-leg ladder. In contrast to the majority of conventional one-dimensional spin systems, we show the ladder to exhibit no ballistic channel and a zero-frequency pseudogap. This is a direct consequence of the fractionalization of spins into mobile Majorana matter and a static Z2 gauge field, which acts as an emergent thermally activated disorder. Our finding rests on complementary calculations of the current correlation function, comprising a phenomenological mean-field treatment of thermal gauge fluctuations, a complete summation over all gauge sectors, as well as exact diagonalization of the original spin model. The results will also be contrasted against the conductivity discarding gauge fluctuations.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 14, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off