Theory of solar cell light trapping through a nonequilibrium Green's function formulation of Maxwell's equations

Theory of solar cell light trapping through a nonequilibrium Green's function formulation of... We develop a theory of solar cell light trapping based on directly solving Maxwell's equations through a nonequilibrium Green's function formalism. This theory rigorously connects the maximum power absorbed by the solar cell to the density of states of the cell. With this theory we are able to reproduce all standard results in solar cell light trapping previously derived using approximate formalisms. Therefore our development places solar cell light trapping theory on a much firmer theoretical foundation. Moreover, here the maximum power formula is derived without the assumption of reciprocity, unlike previous theories on solar cell light trapping. Therefore, we prove that the upper bound of light trapping enhancement cannot be overcome with the use of nonreciprocal structures. As a numerical test, we simulate an absorber structure that consists of a nonreciprocal material, and show that the absorption enhancement factor is largely independent of nonreciprocity, in consistency with the theory. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Theory of solar cell light trapping through a nonequilibrium Green's function formulation of Maxwell's equations

Preview Only

Theory of solar cell light trapping through a nonequilibrium Green's function formulation of Maxwell's equations

Abstract

We develop a theory of solar cell light trapping based on directly solving Maxwell's equations through a nonequilibrium Green's function formalism. This theory rigorously connects the maximum power absorbed by the solar cell to the density of states of the cell. With this theory we are able to reproduce all standard results in solar cell light trapping previously derived using approximate formalisms. Therefore our development places solar cell light trapping theory on a much firmer theoretical foundation. Moreover, here the maximum power formula is derived without the assumption of reciprocity, unlike previous theories on solar cell light trapping. Therefore, we prove that the upper bound of light trapping enhancement cannot be overcome with the use of nonreciprocal structures. As a numerical test, we simulate an absorber structure that consists of a nonreciprocal material, and show that the absorption enhancement factor is largely independent of nonreciprocity, in consistency with the theory.
Loading next page...
 
/lp/aps_physical/theory-of-solar-cell-light-trapping-through-a-nonequilibrium-green-s-4n0lfJxaVm
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.035304
Publisher site
See Article on Publisher Site

Abstract

We develop a theory of solar cell light trapping based on directly solving Maxwell's equations through a nonequilibrium Green's function formalism. This theory rigorously connects the maximum power absorbed by the solar cell to the density of states of the cell. With this theory we are able to reproduce all standard results in solar cell light trapping previously derived using approximate formalisms. Therefore our development places solar cell light trapping theory on a much firmer theoretical foundation. Moreover, here the maximum power formula is derived without the assumption of reciprocity, unlike previous theories on solar cell light trapping. Therefore, we prove that the upper bound of light trapping enhancement cannot be overcome with the use of nonreciprocal structures. As a numerical test, we simulate an absorber structure that consists of a nonreciprocal material, and show that the absorption enhancement factor is largely independent of nonreciprocity, in consistency with the theory.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 14, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial