Theory of avoided criticality in quantum motion in a random potential in high dimensions

Theory of avoided criticality in quantum motion in a random potential in high dimensions The density of states of a three-dimensional Dirac equation with a random potential as well as in other problems of quantum motion in a random potential placed in sufficiently high spatial dimensionality appears to be singular at a certain critical disorder strength. This was seen numerically in a variety of studies as well as supported by detailed renormalization group calculations. At the same time it was suggested by a number of arguments accompanied by detailed numerical simulations that this singularity is rounded off by the rare region fluctuations of random potential, and that tuning the disorder past its critical value is not a genuine phase transition but rather a crossover. Here we develop an analytic theory which explains how rare region effects indeed lead to rounding off of the singularity and to the crossover replacing the transition. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Theory of avoided criticality in quantum motion in a random potential in high dimensions

Preview Only

Theory of avoided criticality in quantum motion in a random potential in high dimensions

Abstract

The density of states of a three-dimensional Dirac equation with a random potential as well as in other problems of quantum motion in a random potential placed in sufficiently high spatial dimensionality appears to be singular at a certain critical disorder strength. This was seen numerically in a variety of studies as well as supported by detailed renormalization group calculations. At the same time it was suggested by a number of arguments accompanied by detailed numerical simulations that this singularity is rounded off by the rare region fluctuations of random potential, and that tuning the disorder past its critical value is not a genuine phase transition but rather a crossover. Here we develop an analytic theory which explains how rare region effects indeed lead to rounding off of the singularity and to the crossover replacing the transition.
Loading next page...
 
/lp/aps_physical/theory-of-avoided-criticality-in-quantum-motion-in-a-random-potential-MnQod2X0DU
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.014205
Publisher site
See Article on Publisher Site

Abstract

The density of states of a three-dimensional Dirac equation with a random potential as well as in other problems of quantum motion in a random potential placed in sufficiently high spatial dimensionality appears to be singular at a certain critical disorder strength. This was seen numerically in a variety of studies as well as supported by detailed renormalization group calculations. At the same time it was suggested by a number of arguments accompanied by detailed numerical simulations that this singularity is rounded off by the rare region fluctuations of random potential, and that tuning the disorder past its critical value is not a genuine phase transition but rather a crossover. Here we develop an analytic theory which explains how rare region effects indeed lead to rounding off of the singularity and to the crossover replacing the transition.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 24, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off