Terahertz diffraction enhanced transparency probed in the near field

Terahertz diffraction enhanced transparency probed in the near field Electromagnetically induced transparency in metamaterials allows to engineer structures which transmit narrow spectral ranges of radiation while exhibiting a large group index. Implementation of this phenomenon frequently calls for strong near-field coupling of bright (dipolar) resonances to dark (multipolar) resonances in the metamolecules comprising the metamaterials. The sharpness and contrast of the resulting transparency windows thus depends strongly on how closely these metamolecules can be placed to one another, placing constraints on fabrication capabilities. In this manuscript, we demonstrate that the reliance on near-field interaction strength can be relaxed, and the magnitude of the electromagnetic-induced transparency enhanced, by exploiting the long-range coupling between metamolecules in periodic lattices. By placing dolmen structures resonant at THz frequencies in a periodic lattice, we show a significant increase of the transparency window when the in-plane diffraction is tuned to the resonant frequency of the metamolecules, as confirmed by direct mapping of the THz near-field amplitude across a lattice of dolmens. Through the direct interrogation of the dark resonance in the near field, we show the interplay of near- and far-field couplings in optimizing the response of planar dolmen arrays via diffraction-enhanced transparency. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Terahertz diffraction enhanced transparency probed in the near field

Preview Only

Terahertz diffraction enhanced transparency probed in the near field

Abstract

Electromagnetically induced transparency in metamaterials allows to engineer structures which transmit narrow spectral ranges of radiation while exhibiting a large group index. Implementation of this phenomenon frequently calls for strong near-field coupling of bright (dipolar) resonances to dark (multipolar) resonances in the metamolecules comprising the metamaterials. The sharpness and contrast of the resulting transparency windows thus depends strongly on how closely these metamolecules can be placed to one another, placing constraints on fabrication capabilities. In this manuscript, we demonstrate that the reliance on near-field interaction strength can be relaxed, and the magnitude of the electromagnetic-induced transparency enhanced, by exploiting the long-range coupling between metamolecules in periodic lattices. By placing dolmen structures resonant at THz frequencies in a periodic lattice, we show a significant increase of the transparency window when the in-plane diffraction is tuned to the resonant frequency of the metamolecules, as confirmed by direct mapping of the THz near-field amplitude across a lattice of dolmens. Through the direct interrogation of the dark resonance in the near field, we show the interplay of near- and far-field couplings in optimizing the response of planar dolmen arrays via diffraction-enhanced transparency.
Loading next page...
 
/lp/aps_physical/terahertz-diffraction-enhanced-transparency-probed-in-the-near-field-9rsCnXll8j
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.085110
Publisher site
See Article on Publisher Site

Abstract

Electromagnetically induced transparency in metamaterials allows to engineer structures which transmit narrow spectral ranges of radiation while exhibiting a large group index. Implementation of this phenomenon frequently calls for strong near-field coupling of bright (dipolar) resonances to dark (multipolar) resonances in the metamolecules comprising the metamaterials. The sharpness and contrast of the resulting transparency windows thus depends strongly on how closely these metamolecules can be placed to one another, placing constraints on fabrication capabilities. In this manuscript, we demonstrate that the reliance on near-field interaction strength can be relaxed, and the magnitude of the electromagnetic-induced transparency enhanced, by exploiting the long-range coupling between metamolecules in periodic lattices. By placing dolmen structures resonant at THz frequencies in a periodic lattice, we show a significant increase of the transparency window when the in-plane diffraction is tuned to the resonant frequency of the metamolecules, as confirmed by direct mapping of the THz near-field amplitude across a lattice of dolmens. Through the direct interrogation of the dark resonance in the near field, we show the interplay of near- and far-field couplings in optimizing the response of planar dolmen arrays via diffraction-enhanced transparency.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Aug 8, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off