Terahertz diffraction enhanced transparency probed in the near field

Terahertz diffraction enhanced transparency probed in the near field Electromagnetically induced transparency in metamaterials allows to engineer structures which transmit narrow spectral ranges of radiation while exhibiting a large group index. Implementation of this phenomenon frequently calls for strong near-field coupling of bright (dipolar) resonances to dark (multipolar) resonances in the metamolecules comprising the metamaterials. The sharpness and contrast of the resulting transparency windows thus depends strongly on how closely these metamolecules can be placed to one another, placing constraints on fabrication capabilities. In this manuscript, we demonstrate that the reliance on near-field interaction strength can be relaxed, and the magnitude of the electromagnetic-induced transparency enhanced, by exploiting the long-range coupling between metamolecules in periodic lattices. By placing dolmen structures resonant at THz frequencies in a periodic lattice, we show a significant increase of the transparency window when the in-plane diffraction is tuned to the resonant frequency of the metamolecules, as confirmed by direct mapping of the THz near-field amplitude across a lattice of dolmens. Through the direct interrogation of the dark resonance in the near field, we show the interplay of near- and far-field couplings in optimizing the response of planar dolmen arrays via diffraction-enhanced transparency. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Terahertz diffraction enhanced transparency probed in the near field

Preview Only

Terahertz diffraction enhanced transparency probed in the near field

Abstract

Electromagnetically induced transparency in metamaterials allows to engineer structures which transmit narrow spectral ranges of radiation while exhibiting a large group index. Implementation of this phenomenon frequently calls for strong near-field coupling of bright (dipolar) resonances to dark (multipolar) resonances in the metamolecules comprising the metamaterials. The sharpness and contrast of the resulting transparency windows thus depends strongly on how closely these metamolecules can be placed to one another, placing constraints on fabrication capabilities. In this manuscript, we demonstrate that the reliance on near-field interaction strength can be relaxed, and the magnitude of the electromagnetic-induced transparency enhanced, by exploiting the long-range coupling between metamolecules in periodic lattices. By placing dolmen structures resonant at THz frequencies in a periodic lattice, we show a significant increase of the transparency window when the in-plane diffraction is tuned to the resonant frequency of the metamolecules, as confirmed by direct mapping of the THz near-field amplitude across a lattice of dolmens. Through the direct interrogation of the dark resonance in the near field, we show the interplay of near- and far-field couplings in optimizing the response of planar dolmen arrays via diffraction-enhanced transparency.
Loading next page...
 
/lp/aps_physical/terahertz-diffraction-enhanced-transparency-probed-in-the-near-field-9rsCnXll8j
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.085110
Publisher site
See Article on Publisher Site

Abstract

Electromagnetically induced transparency in metamaterials allows to engineer structures which transmit narrow spectral ranges of radiation while exhibiting a large group index. Implementation of this phenomenon frequently calls for strong near-field coupling of bright (dipolar) resonances to dark (multipolar) resonances in the metamolecules comprising the metamaterials. The sharpness and contrast of the resulting transparency windows thus depends strongly on how closely these metamolecules can be placed to one another, placing constraints on fabrication capabilities. In this manuscript, we demonstrate that the reliance on near-field interaction strength can be relaxed, and the magnitude of the electromagnetic-induced transparency enhanced, by exploiting the long-range coupling between metamolecules in periodic lattices. By placing dolmen structures resonant at THz frequencies in a periodic lattice, we show a significant increase of the transparency window when the in-plane diffraction is tuned to the resonant frequency of the metamolecules, as confirmed by direct mapping of the THz near-field amplitude across a lattice of dolmens. Through the direct interrogation of the dark resonance in the near field, we show the interplay of near- and far-field couplings in optimizing the response of planar dolmen arrays via diffraction-enhanced transparency.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Aug 8, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off