Symmetry rules shaping spin-orbital textures in surface states

Symmetry rules shaping spin-orbital textures in surface states Strong spin-orbit coupling creates exotic electronic states such as Rashba and topological surface states, which hold promise for technologies involving the manipulation of spin. Only recently has the complexity of these surface states been appreciated: they are composed of several atomic orbitals with distinct spin textures in momentum space. A complete picture of the wave function must account for this orbital dependence of spin. We discover that symmetry constrains the way orbital and spin components of a state coevolve as a function of momentum, and from this, we determine the rules governing how the two degrees of freedom are interwoven. We directly observe this complexity in spin-resolved photoemission and ab initio calculations of the topological surface states of Sb(111), where the photoelectron spin direction near Γ¯ is found to have a strong and unusual dependence on photon polarization. This dependence unexpectedly breaks down at large |k|, where the surface states mix with other nearby surface states. However, along mirror planes, symmetry protects the distinct spin orientations of different orbitals. Our discovery broadens the understanding of surface states with strong spin-orbit coupling, demonstrates the conditions that allow for optical manipulation of photoelectron spin, and will be highly instructive for future spintronics applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)
Preview Only

Symmetry rules shaping spin-orbital textures in surface states

Abstract

Strong spin-orbit coupling creates exotic electronic states such as Rashba and topological surface states, which hold promise for technologies involving the manipulation of spin. Only recently has the complexity of these surface states been appreciated: they are composed of several atomic orbitals with distinct spin textures in momentum space. A complete picture of the wave function must account for this orbital dependence of spin. We discover that symmetry constrains the way orbital and spin components of a state coevolve as a function of momentum, and from this, we determine the rules governing how the two degrees of freedom are interwoven. We directly observe this complexity in spin-resolved photoemission and ab initio calculations of the topological surface states of Sb(111), where the photoelectron spin direction near Γ¯ is found to have a strong and unusual dependence on photon polarization. This dependence unexpectedly breaks down at large |k|, where the surface states mix with other nearby surface states. However, along mirror planes, symmetry protects the distinct spin orientations of different orbitals. Our discovery broadens the understanding of surface states with strong spin-orbit coupling, demonstrates the conditions that allow for optical manipulation of photoelectron spin, and will be highly instructive for future spintronics applications.
Loading next page...
 
/lp/aps_physical/symmetry-rules-shaping-spin-orbital-textures-in-surface-states-41bIJ4aquk
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.95.245142
Publisher site
See Article on Publisher Site

Abstract

Strong spin-orbit coupling creates exotic electronic states such as Rashba and topological surface states, which hold promise for technologies involving the manipulation of spin. Only recently has the complexity of these surface states been appreciated: they are composed of several atomic orbitals with distinct spin textures in momentum space. A complete picture of the wave function must account for this orbital dependence of spin. We discover that symmetry constrains the way orbital and spin components of a state coevolve as a function of momentum, and from this, we determine the rules governing how the two degrees of freedom are interwoven. We directly observe this complexity in spin-resolved photoemission and ab initio calculations of the topological surface states of Sb(111), where the photoelectron spin direction near Γ¯ is found to have a strong and unusual dependence on photon polarization. This dependence unexpectedly breaks down at large |k|, where the surface states mix with other nearby surface states. However, along mirror planes, symmetry protects the distinct spin orientations of different orbitals. Our discovery broadens the understanding of surface states with strong spin-orbit coupling, demonstrates the conditions that allow for optical manipulation of photoelectron spin, and will be highly instructive for future spintronics applications.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jun 30, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off