Symmetry-protected topological order at nonzero temperature

Symmetry-protected topological order at nonzero temperature We address the question of whether symmetry-protected topological (SPT) order can persist at nonzero temperature, with a focus on understanding the thermal stability of several models studied in the theory of quantum computation. We present three results in this direction. First, we prove that nontrivial SPT order protected by a global onsite symmetry cannot persist at nonzero temperature, demonstrating that several quantum computational structures protected by such onsite symmetries are not thermally stable. Second, we prove that the three-dimensional (3D) cluster-state model used in the formulation of topological measurement-based quantum computation possesses a nontrivial SPT-ordered thermal phase when protected by a generalized (1-form) symmetry. The SPT order in this model is detected by long-range localizable entanglement in the thermal state, which compares with related results characterizing SPT order at zero temperature in spin chains using localizable entanglement as an order parameter. Our third result is to demonstrate that the high-error tolerance of this 3D cluster-state model for quantum computation, even without a protecting symmetry, can be understood as an application of quantum error correction to effectively enforce a 1-form symmetry. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review A American Physical Society (APS)

Symmetry-protected topological order at nonzero temperature

Preview Only

Symmetry-protected topological order at nonzero temperature

Abstract

We address the question of whether symmetry-protected topological (SPT) order can persist at nonzero temperature, with a focus on understanding the thermal stability of several models studied in the theory of quantum computation. We present three results in this direction. First, we prove that nontrivial SPT order protected by a global onsite symmetry cannot persist at nonzero temperature, demonstrating that several quantum computational structures protected by such onsite symmetries are not thermally stable. Second, we prove that the three-dimensional (3D) cluster-state model used in the formulation of topological measurement-based quantum computation possesses a nontrivial SPT-ordered thermal phase when protected by a generalized (1-form) symmetry. The SPT order in this model is detected by long-range localizable entanglement in the thermal state, which compares with related results characterizing SPT order at zero temperature in spin chains using localizable entanglement as an order parameter. Our third result is to demonstrate that the high-error tolerance of this 3D cluster-state model for quantum computation, even without a protecting symmetry, can be understood as an application of quantum error correction to effectively enforce a 1-form symmetry.
Loading next page...
 
/lp/aps_physical/symmetry-protected-topological-order-at-nonzero-temperature-7U4RSBXPuX
Publisher
American Physical Society (APS)
Copyright
Copyright © ©2017 American Physical Society
ISSN
1050-2947
eISSN
1094-1622
D.O.I.
10.1103/PhysRevA.96.022306
Publisher site
See Article on Publisher Site

Abstract

We address the question of whether symmetry-protected topological (SPT) order can persist at nonzero temperature, with a focus on understanding the thermal stability of several models studied in the theory of quantum computation. We present three results in this direction. First, we prove that nontrivial SPT order protected by a global onsite symmetry cannot persist at nonzero temperature, demonstrating that several quantum computational structures protected by such onsite symmetries are not thermally stable. Second, we prove that the three-dimensional (3D) cluster-state model used in the formulation of topological measurement-based quantum computation possesses a nontrivial SPT-ordered thermal phase when protected by a generalized (1-form) symmetry. The SPT order in this model is detected by long-range localizable entanglement in the thermal state, which compares with related results characterizing SPT order at zero temperature in spin chains using localizable entanglement as an order parameter. Our third result is to demonstrate that the high-error tolerance of this 3D cluster-state model for quantum computation, even without a protecting symmetry, can be understood as an application of quantum error correction to effectively enforce a 1-form symmetry.

Journal

Physical Review AAmerican Physical Society (APS)

Published: Aug 7, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off