Suppression of magnetism in Ba5AlIr2O11: Interplay of Hund's coupling, molecular orbitals, and spin-orbit interaction

Suppression of magnetism in Ba5AlIr2O11: Interplay of Hund's coupling, molecular orbitals, and... The electronic and magnetic properties of Ba5AlIr2O11 containing Ir-Ir dimers are investigated using the generalized gradient approximation (GGA) and GGA + spin-orbit coupling (SOC) calculations. We found that the strong suppression of the magnetic moment in this compound recently found by Terzic et al. [Phys. Rev. B 91, 235147 (2015)PRBMDO1098-012110.1103/PhysRevB.91.235147] is not due to charge ordering but is related to the joint effect of the spin-orbit interaction and strong covalency, resulting in the formation of metal-metal bonds. They conspire and act against the intraatomic Hund's rule exchange interaction to reduce total magnetic moment of the dimer. We argue that the same mechanism could be relevant for other 4d and 5d dimerized transition metal compounds. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Suppression of magnetism in Ba5AlIr2O11: Interplay of Hund's coupling, molecular orbitals, and spin-orbit interaction

Preview Only

Suppression of magnetism in Ba5AlIr2O11: Interplay of Hund's coupling, molecular orbitals, and spin-orbit interaction

Abstract

The electronic and magnetic properties of Ba5AlIr2O11 containing Ir-Ir dimers are investigated using the generalized gradient approximation (GGA) and GGA + spin-orbit coupling (SOC) calculations. We found that the strong suppression of the magnetic moment in this compound recently found by Terzic et al. [Phys. Rev. B 91, 235147 (2015)PRBMDO1098-012110.1103/PhysRevB.91.235147] is not due to charge ordering but is related to the joint effect of the spin-orbit interaction and strong covalency, resulting in the formation of metal-metal bonds. They conspire and act against the intraatomic Hund's rule exchange interaction to reduce total magnetic moment of the dimer. We argue that the same mechanism could be relevant for other 4d and 5d dimerized transition metal compounds.
Loading next page...
 
/lp/aps_physical/suppression-of-magnetism-in-ba5alir2o11-interplay-of-hund-s-coupling-0SlbiAH5Hd
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.014434
Publisher site
See Article on Publisher Site

Abstract

The electronic and magnetic properties of Ba5AlIr2O11 containing Ir-Ir dimers are investigated using the generalized gradient approximation (GGA) and GGA + spin-orbit coupling (SOC) calculations. We found that the strong suppression of the magnetic moment in this compound recently found by Terzic et al. [Phys. Rev. B 91, 235147 (2015)PRBMDO1098-012110.1103/PhysRevB.91.235147] is not due to charge ordering but is related to the joint effect of the spin-orbit interaction and strong covalency, resulting in the formation of metal-metal bonds. They conspire and act against the intraatomic Hund's rule exchange interaction to reduce total magnetic moment of the dimer. We argue that the same mechanism could be relevant for other 4d and 5d dimerized transition metal compounds.

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 27, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off