Superradiance in rotating stars and pulsar-timing constraints on dark photons

Superradiance in rotating stars and pulsar-timing constraints on dark photons In the presence of massive bosonic degrees of freedom, rotational superradiance can trigger an instability that spins down black holes. This leads to peculiar gravitational-wave signatures and distribution in the spin-mass plane, which in turn can impose stringent constraints on ultralight fields. Here, we demonstrate that there is an analogous spindown effect for conducting stars. We show that rotating stars amplify low-frequency electromagnetic waves, and that this effect is largest when the time scale for conduction within the star is of the order of a light crossing time. This has interesting consequences for dark photons, as massive dark photons would cause stars to spin down due to superradiant instabilities. The time scale of the spindown depends on the mass of the dark photon, and on the rotation rate, compactness, and conductivity of the star. Existing measurements of the spindown rate of pulsars place direct constraints on models of dark sectors. Our analysis suggests that dark photons of mass mV∼10-12  eV are excluded by pulsar-timing observations. These constraints also exclude superradiant instabilities triggered by dark photons as an explanation for the spin limit of observed pulsars. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review D American Physical Society (APS)

Superradiance in rotating stars and pulsar-timing constraints on dark photons

Preview Only

Superradiance in rotating stars and pulsar-timing constraints on dark photons

Abstract

In the presence of massive bosonic degrees of freedom, rotational superradiance can trigger an instability that spins down black holes. This leads to peculiar gravitational-wave signatures and distribution in the spin-mass plane, which in turn can impose stringent constraints on ultralight fields. Here, we demonstrate that there is an analogous spindown effect for conducting stars. We show that rotating stars amplify low-frequency electromagnetic waves, and that this effect is largest when the time scale for conduction within the star is of the order of a light crossing time. This has interesting consequences for dark photons, as massive dark photons would cause stars to spin down due to superradiant instabilities. The time scale of the spindown depends on the mass of the dark photon, and on the rotation rate, compactness, and conductivity of the star. Existing measurements of the spindown rate of pulsars place direct constraints on models of dark sectors. Our analysis suggests that dark photons of mass mV∼10-12  eV are excluded by pulsar-timing observations. These constraints also exclude superradiant instabilities triggered by dark photons as an explanation for the spin limit of observed pulsars.
Loading next page...
 
/lp/aps_physical/superradiance-in-rotating-stars-and-pulsar-timing-constraints-on-dark-y5mXJywRSl
Publisher
The American Physical Society
Copyright
Copyright © Published by the American Physical Society
ISSN
1550-7998
eISSN
1550-2368
D.O.I.
10.1103/PhysRevD.95.124056
Publisher site
See Article on Publisher Site

Abstract

In the presence of massive bosonic degrees of freedom, rotational superradiance can trigger an instability that spins down black holes. This leads to peculiar gravitational-wave signatures and distribution in the spin-mass plane, which in turn can impose stringent constraints on ultralight fields. Here, we demonstrate that there is an analogous spindown effect for conducting stars. We show that rotating stars amplify low-frequency electromagnetic waves, and that this effect is largest when the time scale for conduction within the star is of the order of a light crossing time. This has interesting consequences for dark photons, as massive dark photons would cause stars to spin down due to superradiant instabilities. The time scale of the spindown depends on the mass of the dark photon, and on the rotation rate, compactness, and conductivity of the star. Existing measurements of the spindown rate of pulsars place direct constraints on models of dark sectors. Our analysis suggests that dark photons of mass mV∼10-12  eV are excluded by pulsar-timing observations. These constraints also exclude superradiant instabilities triggered by dark photons as an explanation for the spin limit of observed pulsars.

Journal

Physical Review DAmerican Physical Society (APS)

Published: Jun 15, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off