Superconductor-graphene-superconductor Josephson junction in the quantum Hall regime

Superconductor-graphene-superconductor Josephson junction in the quantum Hall regime Using a nonequilibrium-Green-function method, we numerically studied the transport properties of a superconductor-graphene-superconductor Josephson junction hybrid system in the quantum Hall regime. Our numerical calculations show that there are two interference patterns of the critical current due to the unique band structure of graphene. One is caused by the usual intraband Andreev retroreflection process, and the other one is caused by the interband specular Andreev reflection process. In the Andreev retroreflection regime, chiral Andreev edge states are formed and a distinct supercurrent can be observed. The critical current displays an AB oscillation behavior and the period is approximately 2Φ0=h/e. As for the specular Andreev refection process, the reflected holes are bent back to the reverse direction of the incident electrons and the supercurrent flows along both edges. It is similar to a superconductor ring Josephson junction and the period is Φ0=h/2e. However, the critical current for the specular Andreev reflection process is very small and is unlikely to be observable in an experiment. Thus, we conclude that our numerical calculations are inconsistent to the experimental findings by Amet et al. [Science 352, 966 (2016)SCIEAS0036-807510.1126/science.aad6203]. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Review B American Physical Society (APS)

Superconductor-graphene-superconductor Josephson junction in the quantum Hall regime

Preview Only

Superconductor-graphene-superconductor Josephson junction in the quantum Hall regime

Abstract

Using a nonequilibrium-Green-function method, we numerically studied the transport properties of a superconductor-graphene-superconductor Josephson junction hybrid system in the quantum Hall regime. Our numerical calculations show that there are two interference patterns of the critical current due to the unique band structure of graphene. One is caused by the usual intraband Andreev retroreflection process, and the other one is caused by the interband specular Andreev reflection process. In the Andreev retroreflection regime, chiral Andreev edge states are formed and a distinct supercurrent can be observed. The critical current displays an AB oscillation behavior and the period is approximately 2Φ0=h/e. As for the specular Andreev refection process, the reflected holes are bent back to the reverse direction of the incident electrons and the supercurrent flows along both edges. It is similar to a superconductor ring Josephson junction and the period is Φ0=h/2e. However, the critical current for the specular Andreev reflection process is very small and is unlikely to be observable in an experiment. Thus, we conclude that our numerical calculations are inconsistent to the experimental findings by Amet et al. [Science 352, 966 (2016)SCIEAS0036-807510.1126/science.aad6203].
Loading next page...
 
/lp/aps_physical/superconductor-graphene-superconductor-josephson-junction-in-the-5nUgp350tV
Publisher
The American Physical Society
Copyright
Copyright © ©2017 American Physical Society
ISSN
1098-0121
eISSN
1550-235X
D.O.I.
10.1103/PhysRevB.96.045401
Publisher site
See Article on Publisher Site

Abstract

Using a nonequilibrium-Green-function method, we numerically studied the transport properties of a superconductor-graphene-superconductor Josephson junction hybrid system in the quantum Hall regime. Our numerical calculations show that there are two interference patterns of the critical current due to the unique band structure of graphene. One is caused by the usual intraband Andreev retroreflection process, and the other one is caused by the interband specular Andreev reflection process. In the Andreev retroreflection regime, chiral Andreev edge states are formed and a distinct supercurrent can be observed. The critical current displays an AB oscillation behavior and the period is approximately 2Φ0=h/e. As for the specular Andreev refection process, the reflected holes are bent back to the reverse direction of the incident electrons and the supercurrent flows along both edges. It is similar to a superconductor ring Josephson junction and the period is Φ0=h/2e. However, the critical current for the specular Andreev reflection process is very small and is unlikely to be observable in an experiment. Thus, we conclude that our numerical calculations are inconsistent to the experimental findings by Amet et al. [Science 352, 966 (2016)SCIEAS0036-807510.1126/science.aad6203].

Journal

Physical Review BAmerican Physical Society (APS)

Published: Jul 5, 2017

There are no references for this article.

Sorry, we don’t have permission to share this article on DeepDyve,
but here are related articles that you can start reading right now:

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial